在集成过程中测试Box-Cox参数

Jian Huang, Masahito Kobayashi, M. McAleer
{"title":"在集成过程中测试Box-Cox参数","authors":"Jian Huang, Masahito Kobayashi, M. McAleer","doi":"10.2139/ssrn.1469098","DOIUrl":null,"url":null,"abstract":"This paper analyses the constant elasticity of volatility (CEV) model suggested by [6]. The CEV model without mean reversion is shown to be the inverse Box-Cox transformation of integrated processes asymptotically. It is demonstrated that the maximum likelihood estimator of the power parameter has a nonstandard asymptotic distribution, which is expressed as an integral of Brownian motions, when the data generating process is not mean reverting. However, it is shown that the t-ratio follows a standard normal distribution asymptotically, so that the use of the conventional t-test in analyzing the power parameter of the CEV model is justified even if there is no mean reversion, as is often the case in empirical research. The model may applied to ultra high frequency data.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the Box-Cox Parameter in an Integrated Process\",\"authors\":\"Jian Huang, Masahito Kobayashi, M. McAleer\",\"doi\":\"10.2139/ssrn.1469098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses the constant elasticity of volatility (CEV) model suggested by [6]. The CEV model without mean reversion is shown to be the inverse Box-Cox transformation of integrated processes asymptotically. It is demonstrated that the maximum likelihood estimator of the power parameter has a nonstandard asymptotic distribution, which is expressed as an integral of Brownian motions, when the data generating process is not mean reverting. However, it is shown that the t-ratio follows a standard normal distribution asymptotically, so that the use of the conventional t-test in analyzing the power parameter of the CEV model is justified even if there is no mean reversion, as is often the case in empirical research. The model may applied to ultra high frequency data.\",\"PeriodicalId\":425229,\"journal\":{\"name\":\"ERN: Hypothesis Testing (Topic)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Hypothesis Testing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1469098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1469098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了[6]提出的恒弹性波动率(CEV)模型。无均值回归的CEV模型是积分过程的逆Box-Cox变换。证明了当数据生成过程不是均值还原时,功率参数的极大似然估计量具有非标准渐近分布,并表示为布朗运动的积分。然而,研究表明,t比率渐近地服从标准正态分布,因此,即使没有均值回归,使用传统的t检验来分析CEV模型的功率参数也是合理的,正如实证研究中经常出现的情况一样。该模型可应用于超高频数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing the Box-Cox Parameter in an Integrated Process
This paper analyses the constant elasticity of volatility (CEV) model suggested by [6]. The CEV model without mean reversion is shown to be the inverse Box-Cox transformation of integrated processes asymptotically. It is demonstrated that the maximum likelihood estimator of the power parameter has a nonstandard asymptotic distribution, which is expressed as an integral of Brownian motions, when the data generating process is not mean reverting. However, it is shown that the t-ratio follows a standard normal distribution asymptotically, so that the use of the conventional t-test in analyzing the power parameter of the CEV model is justified even if there is no mean reversion, as is often the case in empirical research. The model may applied to ultra high frequency data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lagrange-Multiplier Test for Large Heterogeneous Panel Data Models "Go Wild for a While!": A New Asymptotically Normal Test for Forecast Evaluation in Nested Models Tests of Conditional Predictive Ability: Existence, Size, and Power Inference for Large-Scale Linear Systems with Known Coefficients The Testing of Efficient Market Hypotheses: A Study of Indian Pharmaceutical Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1