Ouadfel Ghania, Hamza Hebal, Gacemi Abderzak, Bensaid Samir
{"title":"光伏单相逆变器短路故障检测的频响分析技术实验研究","authors":"Ouadfel Ghania, Hamza Hebal, Gacemi Abderzak, Bensaid Samir","doi":"10.18280/ejee.230407","DOIUrl":null,"url":null,"abstract":"The work proposed in this paper concerns the study of short circuit faults in a single-phase inverter dedicated to a photovoltaic application by applying the frequency response analysis (FRA) technique on this IGBT-based inverter controlled by a 18F2550 microcontroller, a prototype inverter was designed in the laboratory to be able to apply off-line short-circuit faults using an LRC meter. The FRA technique is based on the comparison of amplitude-frequency and phase-frequency signatures of healthy cases and fault situations. The experimental results also led to the conclusion that frequency response analysis can be used as an effective tool to detect faults in power electronic devices. This method allows for efficient detection and classification of faults with ease of implementation. For fault location, the fault branch is determined according to its position relative to its healthy state.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency Response Analysis Technique of Short Circuit Faults Detection in Photovoltaic Single-Phase Inverter Experimental Study\",\"authors\":\"Ouadfel Ghania, Hamza Hebal, Gacemi Abderzak, Bensaid Samir\",\"doi\":\"10.18280/ejee.230407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work proposed in this paper concerns the study of short circuit faults in a single-phase inverter dedicated to a photovoltaic application by applying the frequency response analysis (FRA) technique on this IGBT-based inverter controlled by a 18F2550 microcontroller, a prototype inverter was designed in the laboratory to be able to apply off-line short-circuit faults using an LRC meter. The FRA technique is based on the comparison of amplitude-frequency and phase-frequency signatures of healthy cases and fault situations. The experimental results also led to the conclusion that frequency response analysis can be used as an effective tool to detect faults in power electronic devices. This method allows for efficient detection and classification of faults with ease of implementation. For fault location, the fault branch is determined according to its position relative to its healthy state.\",\"PeriodicalId\":340029,\"journal\":{\"name\":\"European Journal of Electrical Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/ejee.230407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ejee.230407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency Response Analysis Technique of Short Circuit Faults Detection in Photovoltaic Single-Phase Inverter Experimental Study
The work proposed in this paper concerns the study of short circuit faults in a single-phase inverter dedicated to a photovoltaic application by applying the frequency response analysis (FRA) technique on this IGBT-based inverter controlled by a 18F2550 microcontroller, a prototype inverter was designed in the laboratory to be able to apply off-line short-circuit faults using an LRC meter. The FRA technique is based on the comparison of amplitude-frequency and phase-frequency signatures of healthy cases and fault situations. The experimental results also led to the conclusion that frequency response analysis can be used as an effective tool to detect faults in power electronic devices. This method allows for efficient detection and classification of faults with ease of implementation. For fault location, the fault branch is determined according to its position relative to its healthy state.