一种用于人脸、动作单元和情感检测的单一层次网络

Shreyank Jyoti, Garima Sharma, Abhinav Dhall
{"title":"一种用于人脸、动作单元和情感检测的单一层次网络","authors":"Shreyank Jyoti, Garima Sharma, Abhinav Dhall","doi":"10.1109/DICTA.2018.8615852","DOIUrl":null,"url":null,"abstract":"The deep neural network shows a consequential performance for a set of specific tasks. A system designed for some correlated task altogether can be feasible for ‘in the wild’ applications. This paper proposes a method for the face localization, Action Unit (AU) and emotion detection. The three different tasks are performed by a simultaneous hierarchical network which exploits the way of learning of neural networks. Such network can represent more relevant features than the individual network. Due to more complex structures and very deep networks, the deployment of neural networks for real life applications is a challenging task. The paper focuses to find an efficient trade-off between the performance and the complexity of the given tasks. This is done by exploring the advantages of optimization of the network for the given tasks by using separable convolutions, binarization and quantization. Four different databases (AffectNet, EmotioNet, RAF-DB and WiderFace) are used to evaluate the performance of our proposed approach by having a separate task specific database.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Single Hierarchical Network for Face, Action Unit and Emotion Detection\",\"authors\":\"Shreyank Jyoti, Garima Sharma, Abhinav Dhall\",\"doi\":\"10.1109/DICTA.2018.8615852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deep neural network shows a consequential performance for a set of specific tasks. A system designed for some correlated task altogether can be feasible for ‘in the wild’ applications. This paper proposes a method for the face localization, Action Unit (AU) and emotion detection. The three different tasks are performed by a simultaneous hierarchical network which exploits the way of learning of neural networks. Such network can represent more relevant features than the individual network. Due to more complex structures and very deep networks, the deployment of neural networks for real life applications is a challenging task. The paper focuses to find an efficient trade-off between the performance and the complexity of the given tasks. This is done by exploring the advantages of optimization of the network for the given tasks by using separable convolutions, binarization and quantization. Four different databases (AffectNet, EmotioNet, RAF-DB and WiderFace) are used to evaluate the performance of our proposed approach by having a separate task specific database.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度神经网络在一系列特定任务中表现出相应的性能。为一些相关任务设计的系统对于“野外”应用程序是可行的。提出了一种人脸定位、动作单元(AU)和情感检测的方法。这三种不同的任务由一个分层网络同时执行,该网络利用神经网络的学习方式。这样的网络可以代表比单个网络更多的相关特征。由于更复杂的结构和非常深的网络,将神经网络部署到现实生活中的应用是一项具有挑战性的任务。本文的重点是在给定任务的性能和复杂性之间找到一个有效的权衡。这是通过使用可分离卷积、二值化和量化来探索给定任务的网络优化的优势来实现的。四个不同的数据库(AffectNet, EmotioNet, RAF-DB和WiderFace)被用来评估我们提出的方法的性能,通过有一个单独的任务特定的数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Single Hierarchical Network for Face, Action Unit and Emotion Detection
The deep neural network shows a consequential performance for a set of specific tasks. A system designed for some correlated task altogether can be feasible for ‘in the wild’ applications. This paper proposes a method for the face localization, Action Unit (AU) and emotion detection. The three different tasks are performed by a simultaneous hierarchical network which exploits the way of learning of neural networks. Such network can represent more relevant features than the individual network. Due to more complex structures and very deep networks, the deployment of neural networks for real life applications is a challenging task. The paper focuses to find an efficient trade-off between the performance and the complexity of the given tasks. This is done by exploring the advantages of optimization of the network for the given tasks by using separable convolutions, binarization and quantization. Four different databases (AffectNet, EmotioNet, RAF-DB and WiderFace) are used to evaluate the performance of our proposed approach by having a separate task specific database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1