多hdcs:协同解决具有复杂局部问题的discsp

David Lee, I. Arana, Hatem Ahriz, Kit-Ying Hui
{"title":"多hdcs:协同解决具有复杂局部问题的discsp","authors":"David Lee, I. Arana, Hatem Ahriz, Kit-Ying Hui","doi":"10.1109/WI-IAT.2010.141","DOIUrl":null,"url":null,"abstract":"We propose Multi-HDCS, a new hybrid approach for solving Distributed CSPs with complex local problems. In Multi-HDCS, each agent concurrently: (i) runs a centralised systematic search for its complex local problem; (ii) participates in a distributed local search; (iii) contributes to a distributed systematic search. Acentralised systematic search algorithm runs on each agent, finding all non-interchangeable solutions to the agent's complex local problem. In order to find a solution to the overall problem, two distributed algorithms which only consider the local solutions found by the centralised systematic searches are run: a local search algorithm identifies the parts of the problem which are most difficult to satisfy, and this information is used in order to find good dynamic variable orderings for a systematic search. We present two implementations of our approach which differ in the strategy used for local search: breakout and penalties on values. Results from an extensive empirical evaluation indicate that these two Multi-HDCS implementations are competitive against existing distributed local and systematic search techniques on both solvable and unsolvable distributed CSPs with complex local problems.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-HDCS: Solving DisCSPs with Complex Local Problems Cooperatively\",\"authors\":\"David Lee, I. Arana, Hatem Ahriz, Kit-Ying Hui\",\"doi\":\"10.1109/WI-IAT.2010.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Multi-HDCS, a new hybrid approach for solving Distributed CSPs with complex local problems. In Multi-HDCS, each agent concurrently: (i) runs a centralised systematic search for its complex local problem; (ii) participates in a distributed local search; (iii) contributes to a distributed systematic search. Acentralised systematic search algorithm runs on each agent, finding all non-interchangeable solutions to the agent's complex local problem. In order to find a solution to the overall problem, two distributed algorithms which only consider the local solutions found by the centralised systematic searches are run: a local search algorithm identifies the parts of the problem which are most difficult to satisfy, and this information is used in order to find good dynamic variable orderings for a systematic search. We present two implementations of our approach which differ in the strategy used for local search: breakout and penalties on values. Results from an extensive empirical evaluation indicate that these two Multi-HDCS implementations are competitive against existing distributed local and systematic search techniques on both solvable and unsolvable distributed CSPs with complex local problems.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的混合方法Multi-HDCS,用于解决具有复杂局部问题的分布式csp。在Multi-HDCS中,每个智能体同时:(i)对其复杂的局部问题进行集中系统搜索;(ii)参与分布式本地搜索;(iii)有助于分布式系统搜索。集中式系统搜索算法在每个智能体上运行,寻找智能体复杂局部问题的所有不可互换的解决方案。为了找到整体问题的解,运行两种只考虑集中系统搜索找到的局部解的分布式算法:局部搜索算法识别问题中最难满足的部分,并使用该信息为系统搜索找到良好的动态变量排序。我们提出了我们的方法的两种实现,它们在局部搜索中使用的策略不同:突破和对值的惩罚。广泛的实证评估结果表明,在复杂局部问题的可解和不可解分布式csp上,这两种Multi-HDCS实现与现有的分布式局部和系统搜索技术相比都具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-HDCS: Solving DisCSPs with Complex Local Problems Cooperatively
We propose Multi-HDCS, a new hybrid approach for solving Distributed CSPs with complex local problems. In Multi-HDCS, each agent concurrently: (i) runs a centralised systematic search for its complex local problem; (ii) participates in a distributed local search; (iii) contributes to a distributed systematic search. Acentralised systematic search algorithm runs on each agent, finding all non-interchangeable solutions to the agent's complex local problem. In order to find a solution to the overall problem, two distributed algorithms which only consider the local solutions found by the centralised systematic searches are run: a local search algorithm identifies the parts of the problem which are most difficult to satisfy, and this information is used in order to find good dynamic variable orderings for a systematic search. We present two implementations of our approach which differ in the strategy used for local search: breakout and penalties on values. Results from an extensive empirical evaluation indicate that these two Multi-HDCS implementations are competitive against existing distributed local and systematic search techniques on both solvable and unsolvable distributed CSPs with complex local problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1