野外大规模视频全光学分割:一个基准

Jiaxu Miao, Xiaohan Wang, Yu Wu, Wei Li, Xu Zhang, Yunchao Wei, Yi Yang
{"title":"野外大规模视频全光学分割:一个基准","authors":"Jiaxu Miao, Xiaohan Wang, Yu Wu, Wei Li, Xu Zhang, Yunchao Wei, Yi Yang","doi":"10.1109/CVPR52688.2022.02036","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new large-scale dataset for the video panoptic segmentation task, which aims to assign semantic classes and track identities to all pixels in a video. As the ground truth for this task is difficult to annotate, previous datasets for video panoptic segmentation are limited by either small scales or the number of scenes. In contrast, our large-scale VIdeo Panoptic Segmentation in the Wild (VIPSeg) dataset provides 3,536 videos and 84,750 frames with pixel-level panoptic annotations, covering a wide range of real-world scenarios and categories. To the best of our knowledge, our VIPSeg is the first attempt to tackle the challenging video panoptic segmentation task in the wild by considering diverse scenarios. Based on VIPSeg, we evaluate existing video panoptic segmentation approaches and propose an efficient and effective clip-based baseline method to analyze our VIPSeg dataset. Our dataset is available at https://github.com/VIPSeg-Dataset/VIPSeg-Dataset/.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Large-scale Video Panoptic Segmentation in the Wild: A Benchmark\",\"authors\":\"Jiaxu Miao, Xiaohan Wang, Yu Wu, Wei Li, Xu Zhang, Yunchao Wei, Yi Yang\",\"doi\":\"10.1109/CVPR52688.2022.02036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new large-scale dataset for the video panoptic segmentation task, which aims to assign semantic classes and track identities to all pixels in a video. As the ground truth for this task is difficult to annotate, previous datasets for video panoptic segmentation are limited by either small scales or the number of scenes. In contrast, our large-scale VIdeo Panoptic Segmentation in the Wild (VIPSeg) dataset provides 3,536 videos and 84,750 frames with pixel-level panoptic annotations, covering a wide range of real-world scenarios and categories. To the best of our knowledge, our VIPSeg is the first attempt to tackle the challenging video panoptic segmentation task in the wild by considering diverse scenarios. Based on VIPSeg, we evaluate existing video panoptic segmentation approaches and propose an efficient and effective clip-based baseline method to analyze our VIPSeg dataset. Our dataset is available at https://github.com/VIPSeg-Dataset/VIPSeg-Dataset/.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.02036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.02036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

在本文中,我们提出了一个新的用于视频全光分割任务的大规模数据集,旨在为视频中的所有像素分配语义类和跟踪身份。由于该任务的基础事实难以注释,以前用于视频全景分割的数据集受到小尺度或场景数量的限制。相比之下,我们的大规模视频全景分割(VIPSeg)数据集提供了3,536个视频和84,750帧的像素级全景注释,涵盖了广泛的现实世界场景和类别。据我们所知,我们的VIPSeg是第一次尝试通过考虑不同的场景来解决具有挑战性的视频全光分割任务。基于VIPSeg,我们评估了现有的视频全光学分割方法,并提出了一种高效的基于片段的基线方法来分析我们的VIPSeg数据集。我们的数据集可以在https://github.com/VIPSeg-Dataset/VIPSeg-Dataset/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale Video Panoptic Segmentation in the Wild: A Benchmark
In this paper, we present a new large-scale dataset for the video panoptic segmentation task, which aims to assign semantic classes and track identities to all pixels in a video. As the ground truth for this task is difficult to annotate, previous datasets for video panoptic segmentation are limited by either small scales or the number of scenes. In contrast, our large-scale VIdeo Panoptic Segmentation in the Wild (VIPSeg) dataset provides 3,536 videos and 84,750 frames with pixel-level panoptic annotations, covering a wide range of real-world scenarios and categories. To the best of our knowledge, our VIPSeg is the first attempt to tackle the challenging video panoptic segmentation task in the wild by considering diverse scenarios. Based on VIPSeg, we evaluate existing video panoptic segmentation approaches and propose an efficient and effective clip-based baseline method to analyze our VIPSeg dataset. Our dataset is available at https://github.com/VIPSeg-Dataset/VIPSeg-Dataset/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Imaging with Events and Frames PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes A Unified Model for Line Projections in Catadioptric Cameras with Rotationally Symmetric Mirrors Distinguishing Unseen from Seen for Generalized Zero-shot Learning Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1