基于自监督学习的图像绘制Mura检测系统

Tzu-Min Chang, Hao-Yuan Chen, Chia-Yu Lin
{"title":"基于自监督学习的图像绘制Mura检测系统","authors":"Tzu-Min Chang, Hao-Yuan Chen, Chia-Yu Lin","doi":"10.1109/ICCE-Taiwan58799.2023.10227069","DOIUrl":null,"url":null,"abstract":"Mura is usually caused by inhomogeneity and material defects in the manufacturing process. According to the JND value, it can be divided into light Mura and serious Mura. In order to optimize the repair process, the factory hopes to distinguish between light Mura and serious Mura before sending them to the repair site. However, the traditional AI model only distinguishes between normal and Mura and is ineffective in distinguishing between light Mura and serious Mura. To address this issue, we propose a Mura Detection System using an image inpainting model with a self-supervised technique and an attention module to distinguish light Mura and serious Mura. The experiment results show that the proposed method’s Area Under Curve (AUC) can reach 0.854.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Inpainting with Self-Supervised Learning for Mura Detection System\",\"authors\":\"Tzu-Min Chang, Hao-Yuan Chen, Chia-Yu Lin\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10227069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mura is usually caused by inhomogeneity and material defects in the manufacturing process. According to the JND value, it can be divided into light Mura and serious Mura. In order to optimize the repair process, the factory hopes to distinguish between light Mura and serious Mura before sending them to the repair site. However, the traditional AI model only distinguishes between normal and Mura and is ineffective in distinguishing between light Mura and serious Mura. To address this issue, we propose a Mura Detection System using an image inpainting model with a self-supervised technique and an attention module to distinguish light Mura and serious Mura. The experiment results show that the proposed method’s Area Under Curve (AUC) can reach 0.854.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10227069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10227069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Mura通常是由制造过程中的不均匀性和材料缺陷引起的。根据JND值可分为轻村和重村。为了优化维修流程,工厂希望在将轻村和重村送去维修现场之前,将他们区分开来。然而,传统的AI模型只能区分正常和村村,对于轻村村和严重村村的区分是无效的。为了解决这一问题,我们提出了一种基于自监督技术的图像绘制模型和注意模块的村村检测系统,以区分轻度村村和严重村村。实验结果表明,该方法的曲线下面积(AUC)可达0.854。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Inpainting with Self-Supervised Learning for Mura Detection System
Mura is usually caused by inhomogeneity and material defects in the manufacturing process. According to the JND value, it can be divided into light Mura and serious Mura. In order to optimize the repair process, the factory hopes to distinguish between light Mura and serious Mura before sending them to the repair site. However, the traditional AI model only distinguishes between normal and Mura and is ineffective in distinguishing between light Mura and serious Mura. To address this issue, we propose a Mura Detection System using an image inpainting model with a self-supervised technique and an attention module to distinguish light Mura and serious Mura. The experiment results show that the proposed method’s Area Under Curve (AUC) can reach 0.854.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1