垂直运输在电力系统惯性支撑中的适用性评估

Toni Tukia, Semen Uimonen, M. Lehtonen
{"title":"垂直运输在电力系统惯性支撑中的适用性评估","authors":"Toni Tukia, Semen Uimonen, M. Lehtonen","doi":"10.1109/ISGTEurope.2018.8571612","DOIUrl":null,"url":null,"abstract":"Displacement of conventional generation with inverter-fed renewable generation hampers power system stability due to a decrease in rotating masses and spinning reserves. This reduction in inertial response capability requires more advanced power system design and innovations in frequency control technology and related power system balancing markets. This paper investigates the potential of applying vertical transportation devices to provide the system with virtual inertia to maintain the frequency quality. The study focuses on the Nordic power system and considers the demand response from both elevators and escalators. The results indicate that vertical transportation is able to contribute to the frequency support with little impact on the aggregate travel time of passengers. However, the capability is limited during the most likely periods of low system inertia, which, in the Nordic power system, occur during summer nights.","PeriodicalId":302863,"journal":{"name":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing the Applicability of Vertical Transportation in Power System Inertial Support\",\"authors\":\"Toni Tukia, Semen Uimonen, M. Lehtonen\",\"doi\":\"10.1109/ISGTEurope.2018.8571612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Displacement of conventional generation with inverter-fed renewable generation hampers power system stability due to a decrease in rotating masses and spinning reserves. This reduction in inertial response capability requires more advanced power system design and innovations in frequency control technology and related power system balancing markets. This paper investigates the potential of applying vertical transportation devices to provide the system with virtual inertia to maintain the frequency quality. The study focuses on the Nordic power system and considers the demand response from both elevators and escalators. The results indicate that vertical transportation is able to contribute to the frequency support with little impact on the aggregate travel time of passengers. However, the capability is limited during the most likely periods of low system inertia, which, in the Nordic power system, occur during summer nights.\",\"PeriodicalId\":302863,\"journal\":{\"name\":\"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2018.8571612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2018.8571612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

常规发电与逆变可再生发电的置换,由于旋转质量和旋转储备的减少,影响了电力系统的稳定性。惯性响应能力的降低需要更先进的电力系统设计和频率控制技术的创新以及相关的电力系统平衡市场。本文探讨了应用垂直输送装置为系统提供虚拟惯性以保持频率质量的可能性。该研究主要关注北欧电力系统,并考虑了电梯和自动扶梯的需求响应。结果表明,垂直交通对客运总出行时间的影响较小,但对客运总出行时间的影响较小。然而,在北欧电力系统最可能出现的低惯性时期,这种能力是有限的,这种情况发生在夏夜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the Applicability of Vertical Transportation in Power System Inertial Support
Displacement of conventional generation with inverter-fed renewable generation hampers power system stability due to a decrease in rotating masses and spinning reserves. This reduction in inertial response capability requires more advanced power system design and innovations in frequency control technology and related power system balancing markets. This paper investigates the potential of applying vertical transportation devices to provide the system with virtual inertia to maintain the frequency quality. The study focuses on the Nordic power system and considers the demand response from both elevators and escalators. The results indicate that vertical transportation is able to contribute to the frequency support with little impact on the aggregate travel time of passengers. However, the capability is limited during the most likely periods of low system inertia, which, in the Nordic power system, occur during summer nights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Identification of HVAC Systems for Office Buildings Considering Real Environment Provision of Frequency-Containment-Reserve by Electric Vehicles: Impact of Technical Requirements Preference Analyses of Residential Appliances in Demand Response: A Novel Perspective Based on Behavioral Economics Research of TRBVT Regulation Characteristics Day-Ahead Optimal Reserve Capacity Planning Based on Stochastic RE and DR Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1