A. Jawwad, Hossam H. Abolfotuh, Bassem A. Abdullah, Hani M. K. Mahdi, S. Eldawlatly
{"title":"一种基于卡尔曼的丘脑网络模型电刺激调制编码器","authors":"A. Jawwad, Hossam H. Abolfotuh, Bassem A. Abdullah, Hani M. K. Mahdi, S. Eldawlatly","doi":"10.1109/BIBE.2015.7367642","DOIUrl":null,"url":null,"abstract":"Restoring vision is no longer impossible as a result of recent advances in neural interfaces. Successful demonstrations of retinal implants motivate the development of more effective visual prostheses. The thalamic Lateral Geniculate Nucleus (LGN) is one potential deep-brain interfacing site for visual prostheses. A main challenge in developing thalamic as well as other visual prostheses is optimizing the parameters of electrical stimulation. This paper introduces a Kalman-based optimal encoder whose function is to determine the optimal electrical stimulation parameters required to induce a certain visual sensation. The performance of the proposed approach is demonstrated using a probabilistic model of LGN neurons. Results demonstrate a significant similarity between neuronal responses obtained using electrical stimulation and the responses obtained using the corresponding visual stimuli with a mean correlation of 0.62 (P <; 0.01, n = 54). These results indicate the efficacy of the proposed optimal encoder in driving LGN neurons to induce visual sensations.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Kalman-based encoder for electrical stimulation modulation in a thalamic network model\",\"authors\":\"A. Jawwad, Hossam H. Abolfotuh, Bassem A. Abdullah, Hani M. K. Mahdi, S. Eldawlatly\",\"doi\":\"10.1109/BIBE.2015.7367642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Restoring vision is no longer impossible as a result of recent advances in neural interfaces. Successful demonstrations of retinal implants motivate the development of more effective visual prostheses. The thalamic Lateral Geniculate Nucleus (LGN) is one potential deep-brain interfacing site for visual prostheses. A main challenge in developing thalamic as well as other visual prostheses is optimizing the parameters of electrical stimulation. This paper introduces a Kalman-based optimal encoder whose function is to determine the optimal electrical stimulation parameters required to induce a certain visual sensation. The performance of the proposed approach is demonstrated using a probabilistic model of LGN neurons. Results demonstrate a significant similarity between neuronal responses obtained using electrical stimulation and the responses obtained using the corresponding visual stimuli with a mean correlation of 0.62 (P <; 0.01, n = 54). These results indicate the efficacy of the proposed optimal encoder in driving LGN neurons to induce visual sensations.\",\"PeriodicalId\":422807,\"journal\":{\"name\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2015.7367642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
由于神经接口的最新进展,恢复视力不再是不可能的。视网膜植入物的成功演示激发了更有效的视觉假体的发展。丘脑外侧膝状核(LGN)是一种潜在的视觉假体脑深部界面部位。开发丘脑和其他视觉假体的主要挑战是优化电刺激参数。本文介绍了一种基于卡尔曼的最优编码器,其功能是确定引起某种视觉感觉所需的最优电刺激参数。利用LGN神经元的概率模型证明了该方法的性能。结果表明,使用电刺激获得的神经元反应与使用相应的视觉刺激获得的神经元反应之间存在显著的相似性,平均相关性为0.62 (P <;0.01, n = 54)。这些结果表明所提出的最优编码器在驱动LGN神经元诱导视觉感觉方面的有效性。
A Kalman-based encoder for electrical stimulation modulation in a thalamic network model
Restoring vision is no longer impossible as a result of recent advances in neural interfaces. Successful demonstrations of retinal implants motivate the development of more effective visual prostheses. The thalamic Lateral Geniculate Nucleus (LGN) is one potential deep-brain interfacing site for visual prostheses. A main challenge in developing thalamic as well as other visual prostheses is optimizing the parameters of electrical stimulation. This paper introduces a Kalman-based optimal encoder whose function is to determine the optimal electrical stimulation parameters required to induce a certain visual sensation. The performance of the proposed approach is demonstrated using a probabilistic model of LGN neurons. Results demonstrate a significant similarity between neuronal responses obtained using electrical stimulation and the responses obtained using the corresponding visual stimuli with a mean correlation of 0.62 (P <; 0.01, n = 54). These results indicate the efficacy of the proposed optimal encoder in driving LGN neurons to induce visual sensations.