基于11范数正则Copula的特征选择

Snehalika Lall, S. Bandyopadhyay
{"title":"基于11范数正则Copula的特征选择","authors":"Snehalika Lall, S. Bandyopadhyay","doi":"10.1145/3386164.3386177","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel feature selection method called RCFS (Regularized Copula based Feature Selection) based on regularized copula. We use l1 regularization, as it penalizes the redundant co-efficient of features and makes them zero, resulting in non-redundant effective features set. Scale-invariant property of copula ensures good performance in noisy data, thereby improving the stability of the method. Three different forms of copula viz., Gaussian copula, Empirical copula, and Archimedean copula are used with l1 regularization. Results prove a significant improvement in the accuracy of the prediction model than any non regularized feature selection method. The number of optimal features to achieve a fixed accuracy value is also less than any other non regularized feature selection techniques.","PeriodicalId":231209,"journal":{"name":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An l1-Norm Regularized Copula Based Feature Selection\",\"authors\":\"Snehalika Lall, S. Bandyopadhyay\",\"doi\":\"10.1145/3386164.3386177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a novel feature selection method called RCFS (Regularized Copula based Feature Selection) based on regularized copula. We use l1 regularization, as it penalizes the redundant co-efficient of features and makes them zero, resulting in non-redundant effective features set. Scale-invariant property of copula ensures good performance in noisy data, thereby improving the stability of the method. Three different forms of copula viz., Gaussian copula, Empirical copula, and Archimedean copula are used with l1 regularization. Results prove a significant improvement in the accuracy of the prediction model than any non regularized feature selection method. The number of optimal features to achieve a fixed accuracy value is also less than any other non regularized feature selection techniques.\",\"PeriodicalId\":231209,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386164.3386177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386164.3386177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于正则化Copula的特征选择方法RCFS (regulalized Copula based feature selection)。我们使用l1正则化,因为它会惩罚特征的冗余系数并使它们为零,从而产生非冗余的有效特征集。copula的尺度不变性保证了该方法在噪声数据中的良好性能,从而提高了方法的稳定性。结合l1正则化,使用了三种不同形式的copula,即高斯copula,经验copula和阿基米德copula。结果表明,与任何非正则化特征选择方法相比,该模型的预测精度有显著提高。实现固定精度值的最优特征的数量也少于任何其他非正则化特征选择技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An l1-Norm Regularized Copula Based Feature Selection
In this paper, we develop a novel feature selection method called RCFS (Regularized Copula based Feature Selection) based on regularized copula. We use l1 regularization, as it penalizes the redundant co-efficient of features and makes them zero, resulting in non-redundant effective features set. Scale-invariant property of copula ensures good performance in noisy data, thereby improving the stability of the method. Three different forms of copula viz., Gaussian copula, Empirical copula, and Archimedean copula are used with l1 regularization. Results prove a significant improvement in the accuracy of the prediction model than any non regularized feature selection method. The number of optimal features to achieve a fixed accuracy value is also less than any other non regularized feature selection techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An IoT-based HIS for Healthcare Risk Management and Cost Control: A Proposal A Computationally Efficient Tracking Scheme for Localization of Soccer Players in an Aerial Video Sequence Research on Automatic Recognition of Homologous Plastic Seals A Data-Centric Accelerator Design Based on Processing in Memory Framework for Continuous System Security Protection in SWaT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1