一种88.6nW动态范围为159 dB的臭氧污染物传感接口IC

Rishika Agarwala, Peng Wang, Akhilesh Tanneeru, Bongmook Lee, V. Misra, B. Calhoun
{"title":"一种88.6nW动态范围为159 dB的臭氧污染物传感接口IC","authors":"Rishika Agarwala, Peng Wang, Akhilesh Tanneeru, Bongmook Lee, V. Misra, B. Calhoun","doi":"10.1145/3370748.3406579","DOIUrl":null,"url":null,"abstract":"This paper presents a low power resistive sensor interface IC designed at 0.6V for ozone pollutant sensing. The large resistance range of gas sensors poses challenges in designing a low power sensor interface. Exiting architectures are insufficient for achieving a high dynamic range while enabling low VDD operation, resulting in high power consumption regardless of the adopted architecture. We present an adaptive architecture that provides baseline resistance cancellation and dynamic current control to enable low VDD operation while maintaining a dynamic range of 159dB across 20kΩ-1MΩ. The sensor interface IC is fabricated in a 65nm bulk CMOS process and consumes 88.6nW of power which is 300x lower than the state-of-art. The full system power ranges between 116 nW - 1.09 μW which includes the proposed sensor interface IC, analog to digital converter and peripheral circuits. The sensor interface's performance was verified using custom resistive metal-oxide sensors for ozone concentrations from 50 ppb to 900 ppb.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An 88.6nW ozone pollutant sensing interface IC with a 159 dB dynamic range\",\"authors\":\"Rishika Agarwala, Peng Wang, Akhilesh Tanneeru, Bongmook Lee, V. Misra, B. Calhoun\",\"doi\":\"10.1145/3370748.3406579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low power resistive sensor interface IC designed at 0.6V for ozone pollutant sensing. The large resistance range of gas sensors poses challenges in designing a low power sensor interface. Exiting architectures are insufficient for achieving a high dynamic range while enabling low VDD operation, resulting in high power consumption regardless of the adopted architecture. We present an adaptive architecture that provides baseline resistance cancellation and dynamic current control to enable low VDD operation while maintaining a dynamic range of 159dB across 20kΩ-1MΩ. The sensor interface IC is fabricated in a 65nm bulk CMOS process and consumes 88.6nW of power which is 300x lower than the state-of-art. The full system power ranges between 116 nW - 1.09 μW which includes the proposed sensor interface IC, analog to digital converter and peripheral circuits. The sensor interface's performance was verified using custom resistive metal-oxide sensors for ozone concentrations from 50 ppb to 900 ppb.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文设计了一种用于臭氧污染物检测的低功耗电阻传感器接口IC,设计电压为0.6V。气体传感器的大电阻范围给低功耗传感器接口的设计带来了挑战。现有架构不足以在实现高动态范围的同时实现低VDD操作,导致无论采用何种架构,功耗都很高。我们提出了一种自适应架构,提供基线电阻抵消和动态电流控制,以实现低VDD操作,同时在20kΩ-1MΩ上保持159dB的动态范围。传感器接口IC采用65nm大块CMOS工艺制造,功耗为88.6nW,比目前的水平低300倍。整个系统的功率范围在116 nW ~ 1.09 μW之间,其中包括所提出的传感器接口IC、模数转换器和外围电路。使用定制的电阻金属氧化物传感器验证了传感器接口的性能,臭氧浓度为50 ppb至900 ppb。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An 88.6nW ozone pollutant sensing interface IC with a 159 dB dynamic range
This paper presents a low power resistive sensor interface IC designed at 0.6V for ozone pollutant sensing. The large resistance range of gas sensors poses challenges in designing a low power sensor interface. Exiting architectures are insufficient for achieving a high dynamic range while enabling low VDD operation, resulting in high power consumption regardless of the adopted architecture. We present an adaptive architecture that provides baseline resistance cancellation and dynamic current control to enable low VDD operation while maintaining a dynamic range of 159dB across 20kΩ-1MΩ. The sensor interface IC is fabricated in a 65nm bulk CMOS process and consumes 88.6nW of power which is 300x lower than the state-of-art. The full system power ranges between 116 nW - 1.09 μW which includes the proposed sensor interface IC, analog to digital converter and peripheral circuits. The sensor interface's performance was verified using custom resistive metal-oxide sensors for ozone concentrations from 50 ppb to 900 ppb.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1