基于线性调频脉冲光边带处理的微波光子传感器

Xiaoyi Tian, Liwei Li, L. Nguyen, R. Minasian, X. Yi
{"title":"基于线性调频脉冲光边带处理的微波光子传感器","authors":"Xiaoyi Tian, Liwei Li, L. Nguyen, R. Minasian, X. Yi","doi":"10.1109/MWP54208.2022.9997605","DOIUrl":null,"url":null,"abstract":"In this paper, a new microwave photonic (MWP) sensing scheme, which is based on interrogating microresonator sensors with fast speed and improved resolution by adopting a broadband linear frequency-modulated pulse (LFMP) in the MWP sideband processing, is presented. The LFMP modulates the interrogation light, creating the optical sideband that sweeps through the resonance rapidly. By using the optimized DC bias point, the resonance spectral dip with arbitrary characteristics can be transformed into the zero point in the temporal envelope of the transmitted LFMP, hence providing improved interrogation resolution of the resonance shifts caused by environmental changes. The proposed scheme was implemented with a microdisk resonance for temperature sensing, where up to 20-fold interrogation resolution improvement was demonstrated by tuning the DC bias voltage to the optimum. The interrogation speed is 500 kHz, which can be further improved by using a shorter repetition period and pulse width.","PeriodicalId":127318,"journal":{"name":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","volume":"167 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microwave Photonic Sensor Based on Optical Sideband Processing with Linear Frequency-modulated Pulse\",\"authors\":\"Xiaoyi Tian, Liwei Li, L. Nguyen, R. Minasian, X. Yi\",\"doi\":\"10.1109/MWP54208.2022.9997605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new microwave photonic (MWP) sensing scheme, which is based on interrogating microresonator sensors with fast speed and improved resolution by adopting a broadband linear frequency-modulated pulse (LFMP) in the MWP sideband processing, is presented. The LFMP modulates the interrogation light, creating the optical sideband that sweeps through the resonance rapidly. By using the optimized DC bias point, the resonance spectral dip with arbitrary characteristics can be transformed into the zero point in the temporal envelope of the transmitted LFMP, hence providing improved interrogation resolution of the resonance shifts caused by environmental changes. The proposed scheme was implemented with a microdisk resonance for temperature sensing, where up to 20-fold interrogation resolution improvement was demonstrated by tuning the DC bias voltage to the optimum. The interrogation speed is 500 kHz, which can be further improved by using a shorter repetition period and pulse width.\",\"PeriodicalId\":127318,\"journal\":{\"name\":\"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)\",\"volume\":\"167 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWP54208.2022.9997605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP54208.2022.9997605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的微波光子(MWP)传感方案,该方案采用宽带线性调频脉冲(LFMP)在MWP边带处理中对微谐振器传感器进行问讯,速度快,分辨率高。LFMP调制询问光,产生快速扫过共振的光学边带。利用优化后的直流偏置点,可以将具有任意特性的共振谱倾角转换为传输LFMP时间包络中的零点,从而提高了对环境变化引起的共振位移的探测分辨率。该方案采用微盘谐振实现温度传感,通过将直流偏置电压调至最佳,可将探测分辨率提高20倍。问讯速度为500千赫,可通过使用更短的重复周期和脉冲宽度进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microwave Photonic Sensor Based on Optical Sideband Processing with Linear Frequency-modulated Pulse
In this paper, a new microwave photonic (MWP) sensing scheme, which is based on interrogating microresonator sensors with fast speed and improved resolution by adopting a broadband linear frequency-modulated pulse (LFMP) in the MWP sideband processing, is presented. The LFMP modulates the interrogation light, creating the optical sideband that sweeps through the resonance rapidly. By using the optimized DC bias point, the resonance spectral dip with arbitrary characteristics can be transformed into the zero point in the temporal envelope of the transmitted LFMP, hence providing improved interrogation resolution of the resonance shifts caused by environmental changes. The proposed scheme was implemented with a microdisk resonance for temperature sensing, where up to 20-fold interrogation resolution improvement was demonstrated by tuning the DC bias voltage to the optimum. The interrogation speed is 500 kHz, which can be further improved by using a shorter repetition period and pulse width.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electronic-Photonic Co-Design of Co-Packaged Optics in Schematic-Driven Layout Design Flow for Photonic Integrated Circuits Frequency-modulated Microwave Signal Generation by Dual-Wavelength Optically Injected Semiconductor Laser Design and Analysis of Low Bias, Low Phase Noise Photodetectors for Frequency Comb Applications Using Particle Swarm Optimization Real-time RF Sensor Monitoring Based on Optical Injected Semiconductor Laser and Temporal Measurement Transmission and Reception of RF Signals in Power-over-Fiber Links Powered by Raman Lasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1