{"title":"基于分解的任意形状建模和理解方法","authors":"David Canino, L. Floriani","doi":"10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2011/053-060","DOIUrl":null,"url":null,"abstract":"Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of components with a simpler topology. Here, we consider a representation for arbitrary shapes, that we call Manifold-Connected Decomposition (MC-decomposition), which is based on a unique decomposition of the shape into nearly manifold parts. We present efficient and powerful two-level representations for non-manifold shapes based on the MC-decomposition and on an efficient and compact data structure for encoding the underlying components. We describe a dimension-independent algorithm to generate such decomposition. We also show that the MC-decomposition provides a suitable basis for geometric reasoning and for homology computation on non-manifold shapes. Finally, we present a comparison with existing representations for arbitrary shapes.","PeriodicalId":405486,"journal":{"name":"European Interdisciplinary Cybersecurity Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Decomposition-based Approach to Modeling and Understanding Arbitrary Shapes\",\"authors\":\"David Canino, L. Floriani\",\"doi\":\"10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2011/053-060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of components with a simpler topology. Here, we consider a representation for arbitrary shapes, that we call Manifold-Connected Decomposition (MC-decomposition), which is based on a unique decomposition of the shape into nearly manifold parts. We present efficient and powerful two-level representations for non-manifold shapes based on the MC-decomposition and on an efficient and compact data structure for encoding the underlying components. We describe a dimension-independent algorithm to generate such decomposition. We also show that the MC-decomposition provides a suitable basis for geometric reasoning and for homology computation on non-manifold shapes. Finally, we present a comparison with existing representations for arbitrary shapes.\",\"PeriodicalId\":405486,\"journal\":{\"name\":\"European Interdisciplinary Cybersecurity Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Interdisciplinary Cybersecurity Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2011/053-060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Interdisciplinary Cybersecurity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2011/053-060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Decomposition-based Approach to Modeling and Understanding Arbitrary Shapes
Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of components with a simpler topology. Here, we consider a representation for arbitrary shapes, that we call Manifold-Connected Decomposition (MC-decomposition), which is based on a unique decomposition of the shape into nearly manifold parts. We present efficient and powerful two-level representations for non-manifold shapes based on the MC-decomposition and on an efficient and compact data structure for encoding the underlying components. We describe a dimension-independent algorithm to generate such decomposition. We also show that the MC-decomposition provides a suitable basis for geometric reasoning and for homology computation on non-manifold shapes. Finally, we present a comparison with existing representations for arbitrary shapes.