数字扩展与双轴指尖传感器辅助触觉反馈研究

Leonard F. Engels, L. Cappello, C. Cipriani
{"title":"数字扩展与双轴指尖传感器辅助触觉反馈研究","authors":"Leonard F. Engels, L. Cappello, C. Cipriani","doi":"10.1109/BIOROB.2018.8487812","DOIUrl":null,"url":null,"abstract":"Using a hand prosthesis means grasping without tactile information. Although supplementary sensory feedback has been investigated extensively, few study results could translate into clinical applications. Unreliable and imprecise feedforward control of current hand prostheses hinders the investigation of supplementary sensory feedback, so an ideal feedforward tool should be used. Thus, we aimed to create a device that would allow to use the sensory deprived human hand as an ideal tool without the need for local anesthesia. For this, we fashioned silicone digit extensions with integrated force sensors and tested the performance of 12 volunteers in grasping with these extensions. Two tests were performed: a simple pick and lift test to compare performance to anesthetized digits, and a virtual egg test to assess grasping efficiency. We found that the extensions significantly alter grasping. In future studies, these extensions will help us investigate how to artificially restore the information necessary for successful and efficient grasping with an ideal feedforward tool.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"21 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Digital Extensions with Bi-axial Fingertip Sensors for Supplementary Tactile Feedback Studies\",\"authors\":\"Leonard F. Engels, L. Cappello, C. Cipriani\",\"doi\":\"10.1109/BIOROB.2018.8487812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a hand prosthesis means grasping without tactile information. Although supplementary sensory feedback has been investigated extensively, few study results could translate into clinical applications. Unreliable and imprecise feedforward control of current hand prostheses hinders the investigation of supplementary sensory feedback, so an ideal feedforward tool should be used. Thus, we aimed to create a device that would allow to use the sensory deprived human hand as an ideal tool without the need for local anesthesia. For this, we fashioned silicone digit extensions with integrated force sensors and tested the performance of 12 volunteers in grasping with these extensions. Two tests were performed: a simple pick and lift test to compare performance to anesthetized digits, and a virtual egg test to assess grasping efficiency. We found that the extensions significantly alter grasping. In future studies, these extensions will help us investigate how to artificially restore the information necessary for successful and efficient grasping with an ideal feedforward tool.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"21 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

使用假肢意味着没有触觉信息的抓取。虽然补充感觉反馈已经被广泛研究,但很少有研究结果可以转化为临床应用。目前义肢前馈控制的不可靠和不精确阻碍了辅助感觉反馈的研究,因此需要一种理想的前馈工具。因此,我们的目标是创造一种设备,可以让失去感觉的人的手作为理想的工具,而不需要局部麻醉。为此,我们制作了带有集成力传感器的硅胶手指延伸器,并测试了12名志愿者用这些延伸器抓取的性能。进行了两项测试:一项是简单的拾取和举起测试,以比较麻醉手指的性能,另一项是虚拟鸡蛋测试,以评估抓取效率。我们发现伸展明显改变抓握。在未来的研究中,这些扩展将帮助我们研究如何通过理想的前馈工具人工恢复成功和有效抓取所需的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Extensions with Bi-axial Fingertip Sensors for Supplementary Tactile Feedback Studies
Using a hand prosthesis means grasping without tactile information. Although supplementary sensory feedback has been investigated extensively, few study results could translate into clinical applications. Unreliable and imprecise feedforward control of current hand prostheses hinders the investigation of supplementary sensory feedback, so an ideal feedforward tool should be used. Thus, we aimed to create a device that would allow to use the sensory deprived human hand as an ideal tool without the need for local anesthesia. For this, we fashioned silicone digit extensions with integrated force sensors and tested the performance of 12 volunteers in grasping with these extensions. Two tests were performed: a simple pick and lift test to compare performance to anesthetized digits, and a virtual egg test to assess grasping efficiency. We found that the extensions significantly alter grasping. In future studies, these extensions will help us investigate how to artificially restore the information necessary for successful and efficient grasping with an ideal feedforward tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insect-Inspired Body Size Learning Model on a Humanoid Robot Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies Optimization-Based Analysis of a Cartwheel Quantifying Human Autonomy Recovery During Ankle Robot-Assisted Reversal of Foot Drop After Stroke ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1