用于车辆驾驶员疲劳检测的非接触式有源光学传感器

K. Murawski, T. Sondej, K. Rózanowski, O. Truszczyński, M. Macander, L. Macander
{"title":"用于车辆驾驶员疲劳检测的非接触式有源光学传感器","authors":"K. Murawski, T. Sondej, K. Rózanowski, O. Truszczyński, M. Macander, L. Macander","doi":"10.1109/ICSENS.2013.6688139","DOIUrl":null,"url":null,"abstract":"In this paper we present the contactless active optical sensor for driver fatigue detection in variable weather and lighting conditions. The fatigue was determined by monitoring activity of the eyes. In our case the bright pupil effect was used. The brightness of the pupil was increased by developing a new keying technique of controlling the IR emitter signal. This technique caused the brightness to increase in comparison to the continuous signal by 50%on average. The new developed sensor, as well as, the image processing algorithm was used during the construction of the driver fatigue monitoring system. The system detects fatigue by analyzing the variability of the following signals: PERCLOSE, PEROPEN, blink frequency, activity of the eyes and pupil diameter.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The contactless active optical sensor for vehicle driver fatigue detection\",\"authors\":\"K. Murawski, T. Sondej, K. Rózanowski, O. Truszczyński, M. Macander, L. Macander\",\"doi\":\"10.1109/ICSENS.2013.6688139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the contactless active optical sensor for driver fatigue detection in variable weather and lighting conditions. The fatigue was determined by monitoring activity of the eyes. In our case the bright pupil effect was used. The brightness of the pupil was increased by developing a new keying technique of controlling the IR emitter signal. This technique caused the brightness to increase in comparison to the continuous signal by 50%on average. The new developed sensor, as well as, the image processing algorithm was used during the construction of the driver fatigue monitoring system. The system detects fatigue by analyzing the variability of the following signals: PERCLOSE, PEROPEN, blink frequency, activity of the eyes and pupil diameter.\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种用于可变天气和光照条件下驾驶员疲劳检测的非接触式有源光学传感器。通过监测眼睛的活动来确定疲劳程度。在我们的例子中使用了亮瞳效果。通过开发一种新的控制红外发射信号的键控技术,提高了瞳孔亮度。该技术使亮度比连续信号平均提高50%。在构建驾驶员疲劳监测系统的过程中,采用了新研制的传感器和图像处理算法。该系统通过分析以下信号的变化来检测疲劳:PERCLOSE、PEROPEN、眨眼频率、眼睛活动和瞳孔直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The contactless active optical sensor for vehicle driver fatigue detection
In this paper we present the contactless active optical sensor for driver fatigue detection in variable weather and lighting conditions. The fatigue was determined by monitoring activity of the eyes. In our case the bright pupil effect was used. The brightness of the pupil was increased by developing a new keying technique of controlling the IR emitter signal. This technique caused the brightness to increase in comparison to the continuous signal by 50%on average. The new developed sensor, as well as, the image processing algorithm was used during the construction of the driver fatigue monitoring system. The system detects fatigue by analyzing the variability of the following signals: PERCLOSE, PEROPEN, blink frequency, activity of the eyes and pupil diameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evaluation of electric-field sensors for projectile detection Large area all-elastomer capacitive tactile arrays Thickness dependent adhesion force and its correlation to surface roughness in multilayered graphene Development of a thin-film thermocouple matrix for in-situ temperature measurement in a lithium ion pouch cell One side electrode type fluidic based capacitive pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1