在MapReduce中实现准并行宽度优先搜索,用于大规模社交网络挖掘

L. Qian, Lei Fan, Jianhua Li
{"title":"在MapReduce中实现准并行宽度优先搜索,用于大规模社交网络挖掘","authors":"L. Qian, Lei Fan, Jianhua Li","doi":"10.1109/CASoN.2013.6622606","DOIUrl":null,"url":null,"abstract":"Online social networks like Weibo and Twitter consist of billions of users and connections, and traditional approaches which are based on serial algorithms and leveraged only a single node or even a single core cannot suffice the that scale of data any more. We propose new distributed quasi-parallel breadth-first search scheme, the common graph traversal algorithm, based on the MapReduce framework, which has better performance (up to one scale of magnitude less time complexity for single-source cases or even better for multiple-source cases) than Pegasus, the state-of-the-art graph mining library, in terms of the complexity of computation and the I/O load. We apply our algorithms on the Weibo dataset, crawled from its website, which contains 135 million users and 10.2 billion directed connections among them, and occupies up to 400 gigabytes. The dataset is by far the largest one of online social networks in research. Based on the Weibo dataset with extremely skewed degree distribution, we give the empirical time complexity and I/O load analysis in each iteration of our proposed methods. Also, We ran the experiments on a 20-node Hadoop cluster to validate our analysis, and the results conform to our predicted empirical results.","PeriodicalId":221487,"journal":{"name":"2013 Fifth International Conference on Computational Aspects of Social Networks","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementing quasi-parallel breadth-first search in MapReduce for large-scale social network mining\",\"authors\":\"L. Qian, Lei Fan, Jianhua Li\",\"doi\":\"10.1109/CASoN.2013.6622606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social networks like Weibo and Twitter consist of billions of users and connections, and traditional approaches which are based on serial algorithms and leveraged only a single node or even a single core cannot suffice the that scale of data any more. We propose new distributed quasi-parallel breadth-first search scheme, the common graph traversal algorithm, based on the MapReduce framework, which has better performance (up to one scale of magnitude less time complexity for single-source cases or even better for multiple-source cases) than Pegasus, the state-of-the-art graph mining library, in terms of the complexity of computation and the I/O load. We apply our algorithms on the Weibo dataset, crawled from its website, which contains 135 million users and 10.2 billion directed connections among them, and occupies up to 400 gigabytes. The dataset is by far the largest one of online social networks in research. Based on the Weibo dataset with extremely skewed degree distribution, we give the empirical time complexity and I/O load analysis in each iteration of our proposed methods. Also, We ran the experiments on a 20-node Hadoop cluster to validate our analysis, and the results conform to our predicted empirical results.\",\"PeriodicalId\":221487,\"journal\":{\"name\":\"2013 Fifth International Conference on Computational Aspects of Social Networks\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Computational Aspects of Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2013.6622606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Aspects of Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2013.6622606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

像微博和推特这样的在线社交网络由数十亿的用户和连接组成,传统的基于串行算法的方法,只利用单个节点甚至单个核心,已经无法满足这种规模的数据。我们提出了新的分布式准并行宽度优先搜索方案,即基于MapReduce框架的公共图遍历算法,该算法在计算复杂性和I/O负载方面比最先进的图挖掘库Pegasus具有更好的性能(单源情况下时间复杂度降低一个数量级,多源情况下甚至更好)。我们将算法应用于微博数据集,该数据集从其网站抓取,其中包含1.35亿用户和102亿个定向连接,占用高达400gb。该数据集是迄今为止研究中最大的在线社交网络之一。基于极不偏斜度分布的微博数据集,我们给出了每次迭代的经验时间复杂度和I/O负载分析。此外,我们在一个20节点的Hadoop集群上运行实验来验证我们的分析,结果符合我们预测的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing quasi-parallel breadth-first search in MapReduce for large-scale social network mining
Online social networks like Weibo and Twitter consist of billions of users and connections, and traditional approaches which are based on serial algorithms and leveraged only a single node or even a single core cannot suffice the that scale of data any more. We propose new distributed quasi-parallel breadth-first search scheme, the common graph traversal algorithm, based on the MapReduce framework, which has better performance (up to one scale of magnitude less time complexity for single-source cases or even better for multiple-source cases) than Pegasus, the state-of-the-art graph mining library, in terms of the complexity of computation and the I/O load. We apply our algorithms on the Weibo dataset, crawled from its website, which contains 135 million users and 10.2 billion directed connections among them, and occupies up to 400 gigabytes. The dataset is by far the largest one of online social networks in research. Based on the Weibo dataset with extremely skewed degree distribution, we give the empirical time complexity and I/O load analysis in each iteration of our proposed methods. Also, We ran the experiments on a 20-node Hadoop cluster to validate our analysis, and the results conform to our predicted empirical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing quasi-parallel breadth-first search in MapReduce for large-scale social network mining Expert user discovery in a spontaneous social network an approach using knowledge retrieval Instances of subconscious social intelligent computing Finding groups of friends who are significant across multiple domains in social networks Triads, transitivity, and social effects in user interactions on Facebook
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1