{"title":"ARFURIMA-APARCH模型估算与大数据分析的新R包ARFURIMA-APARCH","authors":"S. A. Jibrin, Hassan Imafidor Ibrahim","doi":"10.56471/slujst.v4i.264","DOIUrl":null,"url":null,"abstract":"This paper introduces the R package arfurimaaparch version 0.1.0 for time series computations, big data analytics and estimation of Autoregressive Fractional Unit Root Integral Moving Average-Asymmetric Power Autoregressive Conditional Heteroscedasticity (ARFURIMA-APARCH) model. The fdr, arfurimaaparch, arfurimaaparchforecast, arfurimaaparchdiagnostic and arfurimaaparch.sim are the main functions of the package. An improved version of the arfurima package version 1.1.0 of Jibrin and Rahman (2019) for implementing Monte Carlo simulation is also presented. Daily Nigeria all share index and West Texas Intermediate (WTI) crude oil prices for the period 26th January 2004 to 31st December 2018 were used to explained the usage of the packages. When the arfurimaaparch package is compared with other long memory packages, It would produce better stationary process after transformation, appropriate fractional differencing values in the interval of , minimum Akaike Information Criteria values, larger log-likelihood values, minimum p-values of the ARFURIMA-APARCH parameters estimates and large p-values of the Ljung-Box, ARCH-LM and Jarque-Bera test. Findings show that both R packages and their functions are robust, simple and user-friendly. As conclusion, the R packages are suitable, good and reliable for time series analysis computations, statistical analysis and big data analytics.","PeriodicalId":299818,"journal":{"name":"SLU Journal of Science and Technology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New R package arfurimaaparch for Estimation of ARFURIMA-APARCH Model and Big Data Analytics\",\"authors\":\"S. A. Jibrin, Hassan Imafidor Ibrahim\",\"doi\":\"10.56471/slujst.v4i.264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the R package arfurimaaparch version 0.1.0 for time series computations, big data analytics and estimation of Autoregressive Fractional Unit Root Integral Moving Average-Asymmetric Power Autoregressive Conditional Heteroscedasticity (ARFURIMA-APARCH) model. The fdr, arfurimaaparch, arfurimaaparchforecast, arfurimaaparchdiagnostic and arfurimaaparch.sim are the main functions of the package. An improved version of the arfurima package version 1.1.0 of Jibrin and Rahman (2019) for implementing Monte Carlo simulation is also presented. Daily Nigeria all share index and West Texas Intermediate (WTI) crude oil prices for the period 26th January 2004 to 31st December 2018 were used to explained the usage of the packages. When the arfurimaaparch package is compared with other long memory packages, It would produce better stationary process after transformation, appropriate fractional differencing values in the interval of , minimum Akaike Information Criteria values, larger log-likelihood values, minimum p-values of the ARFURIMA-APARCH parameters estimates and large p-values of the Ljung-Box, ARCH-LM and Jarque-Bera test. Findings show that both R packages and their functions are robust, simple and user-friendly. As conclusion, the R packages are suitable, good and reliable for time series analysis computations, statistical analysis and big data analytics.\",\"PeriodicalId\":299818,\"journal\":{\"name\":\"SLU Journal of Science and Technology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLU Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56471/slujst.v4i.264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56471/slujst.v4i.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了用于时间序列计算、大数据分析和估计自回归分数阶单位根积分移动平均-非对称幂自回归条件异方差(ARFURIMA-APARCH)模型的R包ARFURIMA-APARCH version 0.1.0。包括:动脉粥样硬化、动脉粥样硬化、动脉粥样硬化预测、动脉粥样硬化诊断和动脉粥样硬化。Sim是包的主要功能。还介绍了用于实现蒙特卡罗模拟的Jibrin和Rahman(2019)的arfurima包1.1.0版本的改进版本。2004年1月26日至2018年12月31日期间的每日尼日利亚所有股票指数和西德克萨斯中质原油(WTI)价格用于解释包装的使用情况。arfurimaaparch包与其他长记忆包相比,经过变换后的平稳过程更好,在区间内的分数阶差值合适,赤池信息准则值最小,对数似然值较大,arfurimaaparch参数估计的p值最小,Ljung-Box检验、ARCH-LM检验和Jarque-Bera检验的p值较大。结果表明,R包及其功能都是健壮的、简单的和用户友好的。综上所述,R包适用于时间序列分析计算、统计分析和大数据分析,性能良好且可靠。
New R package arfurimaaparch for Estimation of ARFURIMA-APARCH Model and Big Data Analytics
This paper introduces the R package arfurimaaparch version 0.1.0 for time series computations, big data analytics and estimation of Autoregressive Fractional Unit Root Integral Moving Average-Asymmetric Power Autoregressive Conditional Heteroscedasticity (ARFURIMA-APARCH) model. The fdr, arfurimaaparch, arfurimaaparchforecast, arfurimaaparchdiagnostic and arfurimaaparch.sim are the main functions of the package. An improved version of the arfurima package version 1.1.0 of Jibrin and Rahman (2019) for implementing Monte Carlo simulation is also presented. Daily Nigeria all share index and West Texas Intermediate (WTI) crude oil prices for the period 26th January 2004 to 31st December 2018 were used to explained the usage of the packages. When the arfurimaaparch package is compared with other long memory packages, It would produce better stationary process after transformation, appropriate fractional differencing values in the interval of , minimum Akaike Information Criteria values, larger log-likelihood values, minimum p-values of the ARFURIMA-APARCH parameters estimates and large p-values of the Ljung-Box, ARCH-LM and Jarque-Bera test. Findings show that both R packages and their functions are robust, simple and user-friendly. As conclusion, the R packages are suitable, good and reliable for time series analysis computations, statistical analysis and big data analytics.