ARFURIMA-APARCH模型估算与大数据分析的新R包ARFURIMA-APARCH

S. A. Jibrin, Hassan Imafidor Ibrahim
{"title":"ARFURIMA-APARCH模型估算与大数据分析的新R包ARFURIMA-APARCH","authors":"S. A. Jibrin, Hassan Imafidor Ibrahim","doi":"10.56471/slujst.v4i.264","DOIUrl":null,"url":null,"abstract":"This paper introduces the R package arfurimaaparch version 0.1.0 for time series computations, big data analytics and estimation of Autoregressive Fractional Unit Root Integral Moving Average-Asymmetric Power Autoregressive Conditional Heteroscedasticity (ARFURIMA-APARCH) model. The fdr, arfurimaaparch, arfurimaaparchforecast, arfurimaaparchdiagnostic and arfurimaaparch.sim are the main functions of the package. An improved version of the arfurima package version 1.1.0 of Jibrin and Rahman (2019) for implementing Monte Carlo simulation is also presented. Daily Nigeria all share index and West Texas Intermediate (WTI) crude oil prices for the period 26th January 2004 to 31st December 2018 were used to explained the usage of the packages. When the arfurimaaparch package is compared with other long memory packages, It would produce better stationary process after transformation, appropriate fractional differencing values in the interval of , minimum Akaike Information Criteria values, larger log-likelihood values, minimum p-values of the ARFURIMA-APARCH parameters estimates and large p-values of the Ljung-Box, ARCH-LM and Jarque-Bera test. Findings show that both R packages and their functions are robust, simple and user-friendly. As conclusion, the R packages are suitable, good and reliable for time series analysis computations, statistical analysis and big data analytics.","PeriodicalId":299818,"journal":{"name":"SLU Journal of Science and Technology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New R package arfurimaaparch for Estimation of ARFURIMA-APARCH Model and Big Data Analytics\",\"authors\":\"S. A. Jibrin, Hassan Imafidor Ibrahim\",\"doi\":\"10.56471/slujst.v4i.264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the R package arfurimaaparch version 0.1.0 for time series computations, big data analytics and estimation of Autoregressive Fractional Unit Root Integral Moving Average-Asymmetric Power Autoregressive Conditional Heteroscedasticity (ARFURIMA-APARCH) model. The fdr, arfurimaaparch, arfurimaaparchforecast, arfurimaaparchdiagnostic and arfurimaaparch.sim are the main functions of the package. An improved version of the arfurima package version 1.1.0 of Jibrin and Rahman (2019) for implementing Monte Carlo simulation is also presented. Daily Nigeria all share index and West Texas Intermediate (WTI) crude oil prices for the period 26th January 2004 to 31st December 2018 were used to explained the usage of the packages. When the arfurimaaparch package is compared with other long memory packages, It would produce better stationary process after transformation, appropriate fractional differencing values in the interval of , minimum Akaike Information Criteria values, larger log-likelihood values, minimum p-values of the ARFURIMA-APARCH parameters estimates and large p-values of the Ljung-Box, ARCH-LM and Jarque-Bera test. Findings show that both R packages and their functions are robust, simple and user-friendly. As conclusion, the R packages are suitable, good and reliable for time series analysis computations, statistical analysis and big data analytics.\",\"PeriodicalId\":299818,\"journal\":{\"name\":\"SLU Journal of Science and Technology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLU Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56471/slujst.v4i.264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56471/slujst.v4i.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用于时间序列计算、大数据分析和估计自回归分数阶单位根积分移动平均-非对称幂自回归条件异方差(ARFURIMA-APARCH)模型的R包ARFURIMA-APARCH version 0.1.0。包括:动脉粥样硬化、动脉粥样硬化、动脉粥样硬化预测、动脉粥样硬化诊断和动脉粥样硬化。Sim是包的主要功能。还介绍了用于实现蒙特卡罗模拟的Jibrin和Rahman(2019)的arfurima包1.1.0版本的改进版本。2004年1月26日至2018年12月31日期间的每日尼日利亚所有股票指数和西德克萨斯中质原油(WTI)价格用于解释包装的使用情况。arfurimaaparch包与其他长记忆包相比,经过变换后的平稳过程更好,在区间内的分数阶差值合适,赤池信息准则值最小,对数似然值较大,arfurimaaparch参数估计的p值最小,Ljung-Box检验、ARCH-LM检验和Jarque-Bera检验的p值较大。结果表明,R包及其功能都是健壮的、简单的和用户友好的。综上所述,R包适用于时间序列分析计算、统计分析和大数据分析,性能良好且可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New R package arfurimaaparch for Estimation of ARFURIMA-APARCH Model and Big Data Analytics
This paper introduces the R package arfurimaaparch version 0.1.0 for time series computations, big data analytics and estimation of Autoregressive Fractional Unit Root Integral Moving Average-Asymmetric Power Autoregressive Conditional Heteroscedasticity (ARFURIMA-APARCH) model. The fdr, arfurimaaparch, arfurimaaparchforecast, arfurimaaparchdiagnostic and arfurimaaparch.sim are the main functions of the package. An improved version of the arfurima package version 1.1.0 of Jibrin and Rahman (2019) for implementing Monte Carlo simulation is also presented. Daily Nigeria all share index and West Texas Intermediate (WTI) crude oil prices for the period 26th January 2004 to 31st December 2018 were used to explained the usage of the packages. When the arfurimaaparch package is compared with other long memory packages, It would produce better stationary process after transformation, appropriate fractional differencing values in the interval of , minimum Akaike Information Criteria values, larger log-likelihood values, minimum p-values of the ARFURIMA-APARCH parameters estimates and large p-values of the Ljung-Box, ARCH-LM and Jarque-Bera test. Findings show that both R packages and their functions are robust, simple and user-friendly. As conclusion, the R packages are suitable, good and reliable for time series analysis computations, statistical analysis and big data analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of Post-COVID-19 Food Production Index in Nigeria using Box-Jenkins Methodology Sum-Rate Systematic Intercell Interference Coordination Techniques for5GHeterogeneous Networks Towards the Choice of Better Social Media Platform for Knowledge Delivery: Exploratory Study in University of Ilorin Schemes for Extending the Network Lifetime of Wireless Rechargeable Sensor Networks Design and Analysis of 1x4 and 1x8 Circular Patch Microstrip Antenna Array for IWSN Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1