西瓜籽油的提取及特性研究

Mabel Keke, Samson Onoriode Okpo, Oghenekome Cyril Anakpoha
{"title":"西瓜籽油的提取及特性研究","authors":"Mabel Keke, Samson Onoriode Okpo, Oghenekome Cyril Anakpoha","doi":"10.53982/ajerd.2023.0602.01-j","DOIUrl":null,"url":null,"abstract":"This study focuses on employing solvent extraction to extract and characterize watermelon (Citrullus lanatus) seed oil. The physicochemical properties of the oil were investigated to assess its potential applications in the food, cosmetic, and pharmaceutical industries. The extraction process yielded an oil content of 43%. The oil exhibited a pH value of 4.02, refractive index of 1.452 at 25 °C, and specific gravity of 0.934 at 15 °C. The boiling point, cloud point, flash point, and melting point of oil were determined as 326 °C, 7.3 °C, 289 °C, and 2 °C, respectively. The oil's viscosity was measured as 0.04072 Pa.s, and it demonstrated a non-sooty flame nature and solubility in ether. The free fatty acid contents and acid value were determined at 3.339 % and 6.678 mg KOH/g, respectively. The saponification value (S.V) and iodine value (I.V.) were 147.6315 mg/KOH/g and 88.526 mg Iodine/g, respectively. Additionally, peroxide value was 16.40 meq peroxide/g, and the oil exhibited a congealing temperature range of -14 °C to 22 °C. The oil's retention factor during chromatography was determined as 1.6 cm. Fourier-transform infrared (FTIR) analysis revealed the presence of functional groups such as hydroxyl, amine, aliphatic hydrocarbon, carbonyl, carbon-nitrogen bond, and sulfoxide groups in the oil. These findings suggest that the presence of functional groups, such as hydroxyl, amine, aliphatic hydrocarbon, carbonyl, carbon-nitrogen bond, and sulfoxide groups in watermelon oil, indicate its potential suitability for a wide range of applications in the food, cosmetic, and pharmaceutical industries.","PeriodicalId":394198,"journal":{"name":"ABUAD Journal of Engineering Research and Development (AJERD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction and Characterization of Watermelon (Citrullus lanatus) Seed Oil\",\"authors\":\"Mabel Keke, Samson Onoriode Okpo, Oghenekome Cyril Anakpoha\",\"doi\":\"10.53982/ajerd.2023.0602.01-j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on employing solvent extraction to extract and characterize watermelon (Citrullus lanatus) seed oil. The physicochemical properties of the oil were investigated to assess its potential applications in the food, cosmetic, and pharmaceutical industries. The extraction process yielded an oil content of 43%. The oil exhibited a pH value of 4.02, refractive index of 1.452 at 25 °C, and specific gravity of 0.934 at 15 °C. The boiling point, cloud point, flash point, and melting point of oil were determined as 326 °C, 7.3 °C, 289 °C, and 2 °C, respectively. The oil's viscosity was measured as 0.04072 Pa.s, and it demonstrated a non-sooty flame nature and solubility in ether. The free fatty acid contents and acid value were determined at 3.339 % and 6.678 mg KOH/g, respectively. The saponification value (S.V) and iodine value (I.V.) were 147.6315 mg/KOH/g and 88.526 mg Iodine/g, respectively. Additionally, peroxide value was 16.40 meq peroxide/g, and the oil exhibited a congealing temperature range of -14 °C to 22 °C. The oil's retention factor during chromatography was determined as 1.6 cm. Fourier-transform infrared (FTIR) analysis revealed the presence of functional groups such as hydroxyl, amine, aliphatic hydrocarbon, carbonyl, carbon-nitrogen bond, and sulfoxide groups in the oil. These findings suggest that the presence of functional groups, such as hydroxyl, amine, aliphatic hydrocarbon, carbonyl, carbon-nitrogen bond, and sulfoxide groups in watermelon oil, indicate its potential suitability for a wide range of applications in the food, cosmetic, and pharmaceutical industries.\",\"PeriodicalId\":394198,\"journal\":{\"name\":\"ABUAD Journal of Engineering Research and Development (AJERD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ABUAD Journal of Engineering Research and Development (AJERD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53982/ajerd.2023.0602.01-j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ABUAD Journal of Engineering Research and Development (AJERD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53982/ajerd.2023.0602.01-j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用溶剂萃取法对西瓜籽油进行提取和表征。研究了该油的理化性质,以评估其在食品、化妆品和制药工业中的潜在应用。提取工艺的含油量为43%。该油的pH值为4.02,25℃时折射率为1.452,15℃时比重为0.934。测定油的沸点、浊点、闪点和熔点分别为326℃、7.3℃、289℃和2℃。测得该油的粘度为0.04072 Pa。S,表现出非煤烟火焰性质和在醚中的溶解性。测定游离脂肪酸含量为3.339%,酸值为6.678 mg KOH/g。皂化值(S.V)和碘值(i.v)分别为147.6315 mg/KOH/g和88.526 mg碘/g。过氧化值为16.40 meq /g,油的凝结温度范围为-14℃~ 22℃。色谱时测定油的保留系数为1.6 cm。傅里叶红外(FTIR)分析发现,油中存在羟基、胺、脂肪烃、羰基、碳氮键和亚砜等官能团。这些发现表明,西瓜油中含有羟基、胺、脂肪烃、羰基、碳氮键和亚砜等官能团,在食品、化妆品和制药工业中具有广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction and Characterization of Watermelon (Citrullus lanatus) Seed Oil
This study focuses on employing solvent extraction to extract and characterize watermelon (Citrullus lanatus) seed oil. The physicochemical properties of the oil were investigated to assess its potential applications in the food, cosmetic, and pharmaceutical industries. The extraction process yielded an oil content of 43%. The oil exhibited a pH value of 4.02, refractive index of 1.452 at 25 °C, and specific gravity of 0.934 at 15 °C. The boiling point, cloud point, flash point, and melting point of oil were determined as 326 °C, 7.3 °C, 289 °C, and 2 °C, respectively. The oil's viscosity was measured as 0.04072 Pa.s, and it demonstrated a non-sooty flame nature and solubility in ether. The free fatty acid contents and acid value were determined at 3.339 % and 6.678 mg KOH/g, respectively. The saponification value (S.V) and iodine value (I.V.) were 147.6315 mg/KOH/g and 88.526 mg Iodine/g, respectively. Additionally, peroxide value was 16.40 meq peroxide/g, and the oil exhibited a congealing temperature range of -14 °C to 22 °C. The oil's retention factor during chromatography was determined as 1.6 cm. Fourier-transform infrared (FTIR) analysis revealed the presence of functional groups such as hydroxyl, amine, aliphatic hydrocarbon, carbonyl, carbon-nitrogen bond, and sulfoxide groups in the oil. These findings suggest that the presence of functional groups, such as hydroxyl, amine, aliphatic hydrocarbon, carbonyl, carbon-nitrogen bond, and sulfoxide groups in watermelon oil, indicate its potential suitability for a wide range of applications in the food, cosmetic, and pharmaceutical industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Radio Access Technology Selection Algorithm for Heterogeneous Wireless Networks Unlocking the Potential of Palm Kernel Shell and Quarry Dust: A Cost-Driven Approach to Replacing Sand and Gravel in Concrete Response Surface Methodology Optimization of wear rate Parameters in metallic alloys Evaluation of Effective Interfacial Area in a Rotating Packed Bed Equipped with Dual Gas Inlets Development of an Automatic Phase Selector for Nigerian Power Utility Customers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1