贝叶斯信念网络实时控制策略及其在船舶入级问题求解中的应用

S. Musman, LiWu Chang, L. Booker
{"title":"贝叶斯信念网络实时控制策略及其在船舶入级问题求解中的应用","authors":"S. Musman, LiWu Chang, L. Booker","doi":"10.1109/TAI.1990.130430","DOIUrl":null,"url":null,"abstract":"Efficient ways to prioritize and gather evidence within belief networks are discussed. The authors also suggest ways in which one can structure a large problem (a ship classification problem in the present case) into a series of small ones. This both re-defines much of the control strategy into the system structure and also localizes run-time control issues into much smaller networks. The overall control strategy thus includes the combination of both of these methods. By combining them correctly one can reduce the amount of dynamic computation required during run-time, and thus improve the responsiveness of the system. When dealing with the ship classification problem, the techniques described appear to work well.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A real time control strategy for Bayesian belief networks with application to ship classification problem solving\",\"authors\":\"S. Musman, LiWu Chang, L. Booker\",\"doi\":\"10.1109/TAI.1990.130430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient ways to prioritize and gather evidence within belief networks are discussed. The authors also suggest ways in which one can structure a large problem (a ship classification problem in the present case) into a series of small ones. This both re-defines much of the control strategy into the system structure and also localizes run-time control issues into much smaller networks. The overall control strategy thus includes the combination of both of these methods. By combining them correctly one can reduce the amount of dynamic computation required during run-time, and thus improve the responsiveness of the system. When dealing with the ship classification problem, the techniques described appear to work well.<<ETX>>\",\"PeriodicalId\":366276,\"journal\":{\"name\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1990.130430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论了在信念网络中确定优先级和收集证据的有效方法。作者还提出了一些方法,可以将一个大问题(在本例中是船舶分类问题)组织成一系列小问题。这既重新定义了系统结构中的控制策略,又将运行时控制问题定位到更小的网络中。因此,总体控制策略包括这两种方法的结合。通过正确地组合它们,可以减少运行时所需的动态计算量,从而提高系统的响应性。在处理船舶入级问题时,所描述的技术似乎很有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real time control strategy for Bayesian belief networks with application to ship classification problem solving
Efficient ways to prioritize and gather evidence within belief networks are discussed. The authors also suggest ways in which one can structure a large problem (a ship classification problem in the present case) into a series of small ones. This both re-defines much of the control strategy into the system structure and also localizes run-time control issues into much smaller networks. The overall control strategy thus includes the combination of both of these methods. By combining them correctly one can reduce the amount of dynamic computation required during run-time, and thus improve the responsiveness of the system. When dealing with the ship classification problem, the techniques described appear to work well.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning steppingstones for problem solving Conventional and associative memory-based spelling checkers Relationships in an object knowledge representation model A tool for building decision-support-oriented expert systems Generation of feature detectors for texture discrimination by genetic search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1