连续时间分段自适应状态估计的收敛性

Jitendra Tugnait
{"title":"连续时间分段自适应状态估计的收敛性","authors":"Jitendra Tugnait","doi":"10.1109/CDC.1980.271884","DOIUrl":null,"url":null,"abstract":"The asymptotic behavior of Bayes optimal adaptive state estimation schemes (also called the partitioned adaptive estimation algorithms) for continuous-time linear dynamic Gauss-Markov systems with unknown parameters is investigated. The unknown system parameters are assumed to belong to a finite set. The results are developed through weak consistency of the maximum likelihood and the maximum a posteriori probability estimates of the unknown parameters.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convergence of continuous-time partitioned adaptive state estimators\",\"authors\":\"Jitendra Tugnait\",\"doi\":\"10.1109/CDC.1980.271884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The asymptotic behavior of Bayes optimal adaptive state estimation schemes (also called the partitioned adaptive estimation algorithms) for continuous-time linear dynamic Gauss-Markov systems with unknown parameters is investigated. The unknown system parameters are assumed to belong to a finite set. The results are developed through weak consistency of the maximum likelihood and the maximum a posteriori probability estimates of the unknown parameters.\",\"PeriodicalId\":332964,\"journal\":{\"name\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1980.271884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有未知参数的连续线性动态高斯-马尔可夫系统的贝叶斯最优自适应状态估计算法的渐近性。假设未知系统参数属于有限集合。结果是通过对未知参数的最大似然估计和最大后验概率估计的弱一致性得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence of continuous-time partitioned adaptive state estimators
The asymptotic behavior of Bayes optimal adaptive state estimation schemes (also called the partitioned adaptive estimation algorithms) for continuous-time linear dynamic Gauss-Markov systems with unknown parameters is investigated. The unknown system parameters are assumed to belong to a finite set. The results are developed through weak consistency of the maximum likelihood and the maximum a posteriori probability estimates of the unknown parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mathematical approach to organization theory Newton's method and the goldstein step length rule for constrained minimization On linear discrete-time deadbeat control Three steps to alleviate control and observation spillover problems of large space structures Parallel optimization algorithms using sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1