热工液压反馈在高保真中子输运程序HNET中的实现与分析

Yanling Zhu, Chen Hao, Peijun Li, Xiaoyu Zhou
{"title":"热工液压反馈在高保真中子输运程序HNET中的实现与分析","authors":"Yanling Zhu, Chen Hao, Peijun Li, Xiaoyu Zhou","doi":"10.1115/icone29-92724","DOIUrl":null,"url":null,"abstract":"\n With the growing requirement of predicting reactor behavior in high-fidelity detail at practical conditions, it is urgent to accomplish thermal hydraulics (T-H) feedback in the high-fidelity neutron transport program HNET. For better convergence behaviors than Picard iteration, the Matrix Free Newton/Krylov (MFNK) method was employed to resolve neutronics and thermal-hydraulics coupling system. MFNK treats each subsystem as a black box within the Newton method framework, so it can facilitate the coupling procedure without surrendering efficiency or robustness. For the T-H feedback effects, a simplified internal thermal hydraulics model was adopted to provide T-H conditions for neutronics. The convergence behaviors of MFNK and Picard iteration were assessed through simple typical cases. Finally, the effectiveness of the coupling system was verified by the VERA problem #6. Numerical results demonstrate the efficiency and stability of MFNK compared with Picard iteration. Moreover, it turns out that the coupling system has a good performance in realistic cases.","PeriodicalId":325659,"journal":{"name":"Volume 7B: Thermal-Hydraulics and Safety Analysis","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation and Analysis of Thermal Hydraulics Feedback in High-Fidelity Neutron Transport Program HNET\",\"authors\":\"Yanling Zhu, Chen Hao, Peijun Li, Xiaoyu Zhou\",\"doi\":\"10.1115/icone29-92724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the growing requirement of predicting reactor behavior in high-fidelity detail at practical conditions, it is urgent to accomplish thermal hydraulics (T-H) feedback in the high-fidelity neutron transport program HNET. For better convergence behaviors than Picard iteration, the Matrix Free Newton/Krylov (MFNK) method was employed to resolve neutronics and thermal-hydraulics coupling system. MFNK treats each subsystem as a black box within the Newton method framework, so it can facilitate the coupling procedure without surrendering efficiency or robustness. For the T-H feedback effects, a simplified internal thermal hydraulics model was adopted to provide T-H conditions for neutronics. The convergence behaviors of MFNK and Picard iteration were assessed through simple typical cases. Finally, the effectiveness of the coupling system was verified by the VERA problem #6. Numerical results demonstrate the efficiency and stability of MFNK compared with Picard iteration. Moreover, it turns out that the coupling system has a good performance in realistic cases.\",\"PeriodicalId\":325659,\"journal\":{\"name\":\"Volume 7B: Thermal-Hydraulics and Safety Analysis\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Thermal-Hydraulics and Safety Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-92724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Thermal-Hydraulics and Safety Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-92724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对实际条件下高保真详细预测反应堆行为的要求越来越高,在高保真中子输运程序HNET中实现热工反馈成为迫切需要。为了获得比皮卡德迭代更好的收敛性能,采用无矩阵牛顿/克雷洛夫(MFNK)方法求解了热工-热工耦合系统。MFNK将每个子系统视为牛顿方法框架中的一个黑盒,因此它可以在不牺牲效率或鲁棒性的情况下简化耦合过程。对于T-H反馈效应,采用简化的内部热工模型提供了中子的T-H条件。通过简单的典型案例对MFNK和Picard迭代的收敛性进行了评价。最后,通过VERA问题#6验证了耦合系统的有效性。数值结果表明,与Picard迭代相比,MFNK算法具有较高的效率和稳定性。实际应用表明,该耦合系统具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation and Analysis of Thermal Hydraulics Feedback in High-Fidelity Neutron Transport Program HNET
With the growing requirement of predicting reactor behavior in high-fidelity detail at practical conditions, it is urgent to accomplish thermal hydraulics (T-H) feedback in the high-fidelity neutron transport program HNET. For better convergence behaviors than Picard iteration, the Matrix Free Newton/Krylov (MFNK) method was employed to resolve neutronics and thermal-hydraulics coupling system. MFNK treats each subsystem as a black box within the Newton method framework, so it can facilitate the coupling procedure without surrendering efficiency or robustness. For the T-H feedback effects, a simplified internal thermal hydraulics model was adopted to provide T-H conditions for neutronics. The convergence behaviors of MFNK and Picard iteration were assessed through simple typical cases. Finally, the effectiveness of the coupling system was verified by the VERA problem #6. Numerical results demonstrate the efficiency and stability of MFNK compared with Picard iteration. Moreover, it turns out that the coupling system has a good performance in realistic cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and Numerical Study on Convective Heat Transfer Characteristic in the Turbulent Region of Molten Salt in Shell-Side of Shell and Tube Heat Exchanger Thermal-Hydraulic Safety Analysis of Natural Circulation Lead-Cooled Fast Reactor SNCLFR-100 Core Based on Porous Medium Approach Verification Dynamic Response for Sinusoidal Wave Flow in Narrow Rectangular Channel Machine Learning Modelling of Decay Heat Removal in High Temperature Gas-Cooled Reactor Three-Dimensional Numerical Simulation of the Natural Circulation Characteristics Based on PLANDTL-DHX for Different Modeling Methods of the Core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1