一种用于结构拓扑优化的位数组表示遗传算法

Shengyin Wang, K. Tai
{"title":"一种用于结构拓扑优化的位数组表示遗传算法","authors":"Shengyin Wang, K. Tai","doi":"10.1109/CEC.2003.1299640","DOIUrl":null,"url":null,"abstract":"A bit-array representation method for structural topology optimization using the GA is proposed. The importance of design connectivity is further emphasized and a hierarchical violation penalty method is proposed to penalize the violated constraint functions so that the problem of representation degeneracy can be overcome and the GA search can be driven towards the combination of better structural performance, less unusable material and fewer connected objects in the design domain. An identical initialization method is also proposed to test the performance of the GA operators. With the appropriately selected GA operators, the bit-array representation GA is applied to the structural topology optimization problems of minimum weight. Numerical results demonstrate that the present GA can achieve better accuracy with less computational cost and suggest that the GA performance can be significantly improved by handling the design connectivity properly.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A bit-array representation GA for structural topology optimization\",\"authors\":\"Shengyin Wang, K. Tai\",\"doi\":\"10.1109/CEC.2003.1299640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bit-array representation method for structural topology optimization using the GA is proposed. The importance of design connectivity is further emphasized and a hierarchical violation penalty method is proposed to penalize the violated constraint functions so that the problem of representation degeneracy can be overcome and the GA search can be driven towards the combination of better structural performance, less unusable material and fewer connected objects in the design domain. An identical initialization method is also proposed to test the performance of the GA operators. With the appropriately selected GA operators, the bit-array representation GA is applied to the structural topology optimization problems of minimum weight. Numerical results demonstrate that the present GA can achieve better accuracy with less computational cost and suggest that the GA performance can be significantly improved by handling the design connectivity properly.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种利用遗传算法进行结构拓扑优化的位数组表示方法。进一步强调了设计连通性的重要性,提出了一种分层违例惩罚方法对违例约束函数进行惩罚,克服了表示退化问题,推动了遗传算法搜索朝着更好的结构性能、更少的不可用材料和更少的设计域内连接对象的组合方向发展。提出了一种相同的初始化方法来测试遗传算子的性能。通过选择合适的遗传算子,将位数组表示遗传算法应用于最小权值的结构拓扑优化问题。数值结果表明,该遗传算法能够以较少的计算成本获得较高的精度,并表明通过合理处理设计连通性可以显著提高遗传算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A bit-array representation GA for structural topology optimization
A bit-array representation method for structural topology optimization using the GA is proposed. The importance of design connectivity is further emphasized and a hierarchical violation penalty method is proposed to penalize the violated constraint functions so that the problem of representation degeneracy can be overcome and the GA search can be driven towards the combination of better structural performance, less unusable material and fewer connected objects in the design domain. An identical initialization method is also proposed to test the performance of the GA operators. With the appropriately selected GA operators, the bit-array representation GA is applied to the structural topology optimization problems of minimum weight. Numerical results demonstrate that the present GA can achieve better accuracy with less computational cost and suggest that the GA performance can be significantly improved by handling the design connectivity properly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1