{"title":"一种用于结构拓扑优化的位数组表示遗传算法","authors":"Shengyin Wang, K. Tai","doi":"10.1109/CEC.2003.1299640","DOIUrl":null,"url":null,"abstract":"A bit-array representation method for structural topology optimization using the GA is proposed. The importance of design connectivity is further emphasized and a hierarchical violation penalty method is proposed to penalize the violated constraint functions so that the problem of representation degeneracy can be overcome and the GA search can be driven towards the combination of better structural performance, less unusable material and fewer connected objects in the design domain. An identical initialization method is also proposed to test the performance of the GA operators. With the appropriately selected GA operators, the bit-array representation GA is applied to the structural topology optimization problems of minimum weight. Numerical results demonstrate that the present GA can achieve better accuracy with less computational cost and suggest that the GA performance can be significantly improved by handling the design connectivity properly.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A bit-array representation GA for structural topology optimization\",\"authors\":\"Shengyin Wang, K. Tai\",\"doi\":\"10.1109/CEC.2003.1299640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bit-array representation method for structural topology optimization using the GA is proposed. The importance of design connectivity is further emphasized and a hierarchical violation penalty method is proposed to penalize the violated constraint functions so that the problem of representation degeneracy can be overcome and the GA search can be driven towards the combination of better structural performance, less unusable material and fewer connected objects in the design domain. An identical initialization method is also proposed to test the performance of the GA operators. With the appropriately selected GA operators, the bit-array representation GA is applied to the structural topology optimization problems of minimum weight. Numerical results demonstrate that the present GA can achieve better accuracy with less computational cost and suggest that the GA performance can be significantly improved by handling the design connectivity properly.\",\"PeriodicalId\":416243,\"journal\":{\"name\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2003.1299640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A bit-array representation GA for structural topology optimization
A bit-array representation method for structural topology optimization using the GA is proposed. The importance of design connectivity is further emphasized and a hierarchical violation penalty method is proposed to penalize the violated constraint functions so that the problem of representation degeneracy can be overcome and the GA search can be driven towards the combination of better structural performance, less unusable material and fewer connected objects in the design domain. An identical initialization method is also proposed to test the performance of the GA operators. With the appropriately selected GA operators, the bit-array representation GA is applied to the structural topology optimization problems of minimum weight. Numerical results demonstrate that the present GA can achieve better accuracy with less computational cost and suggest that the GA performance can be significantly improved by handling the design connectivity properly.