用EMD和EWT分类正常、发作和无发作的脑电图信号

Siddharth Saxena, C. Hemanth, R. Sangeetha
{"title":"用EMD和EWT分类正常、发作和无发作的脑电图信号","authors":"Siddharth Saxena, C. Hemanth, R. Sangeetha","doi":"10.1109/ICNETS2.2017.8067961","DOIUrl":null,"url":null,"abstract":"Objectives: Electroencephalogram (EEG) plays an important role in recording the activity of human brain. Identification of epileptic seizures can be done using EEG signals. Methods/ Statistical Analysis: In this work for classification of EEG signals a method known as Empirical mode decomposition (EMD) is used and compared with empirical wavelet transform (EWT) based method. Findings: In this paper the EMD has been considered for five classes of EEG signals. Intrinsic Mode functions obtained for these EEG signals have been shown. The amplitude modulation bandwidth BAM and frequency modulation bandwidth BFM have been calculated. Applications/ Improvements: The classification based on bandwidth features and least square support vector machine (LS-SVM) provided better categorization accuracy than earlier adopted methods. Results have been shown in this report.","PeriodicalId":413865,"journal":{"name":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classification of normal, seizure and seizure-free EEG signals using EMD and EWT\",\"authors\":\"Siddharth Saxena, C. Hemanth, R. Sangeetha\",\"doi\":\"10.1109/ICNETS2.2017.8067961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: Electroencephalogram (EEG) plays an important role in recording the activity of human brain. Identification of epileptic seizures can be done using EEG signals. Methods/ Statistical Analysis: In this work for classification of EEG signals a method known as Empirical mode decomposition (EMD) is used and compared with empirical wavelet transform (EWT) based method. Findings: In this paper the EMD has been considered for five classes of EEG signals. Intrinsic Mode functions obtained for these EEG signals have been shown. The amplitude modulation bandwidth BAM and frequency modulation bandwidth BFM have been calculated. Applications/ Improvements: The classification based on bandwidth features and least square support vector machine (LS-SVM) provided better categorization accuracy than earlier adopted methods. Results have been shown in this report.\",\"PeriodicalId\":413865,\"journal\":{\"name\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNETS2.2017.8067961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNETS2.2017.8067961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目的:脑电图(EEG)是记录人类大脑活动的重要手段。癫痫病发作的识别可以用脑电图信号来完成。方法/统计分析:本文采用经验模态分解(EMD)方法对脑电信号进行分类,并与基于经验小波变换(EWT)的方法进行比较。结果:本文考虑了五类EEG信号的EMD。本文给出了这些脑电信号的固有模态函数。计算了调幅带宽BAM和调频带宽BFM。应用/改进:基于带宽特征和最小二乘支持向量机(LS-SVM)的分类比以前采用的方法具有更好的分类精度。结果已在本报告中显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of normal, seizure and seizure-free EEG signals using EMD and EWT
Objectives: Electroencephalogram (EEG) plays an important role in recording the activity of human brain. Identification of epileptic seizures can be done using EEG signals. Methods/ Statistical Analysis: In this work for classification of EEG signals a method known as Empirical mode decomposition (EMD) is used and compared with empirical wavelet transform (EWT) based method. Findings: In this paper the EMD has been considered for five classes of EEG signals. Intrinsic Mode functions obtained for these EEG signals have been shown. The amplitude modulation bandwidth BAM and frequency modulation bandwidth BFM have been calculated. Applications/ Improvements: The classification based on bandwidth features and least square support vector machine (LS-SVM) provided better categorization accuracy than earlier adopted methods. Results have been shown in this report.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security protocols for Internet of Things: A survey Secure identity management in mobile cloud computing Vehicle license plate detection and recognition using non-blind image de-blurring algorithm A connectivity protocol for star topology using wireless sensor network Enhancing the efficiency of carry skip adder using MBFA-10T
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1