Hadoop的内存缓存编排

J. Kwak, Eunji Hwang, Tae-kyung Yoo, Beomseok Nam, Young-ri Choi
{"title":"Hadoop的内存缓存编排","authors":"J. Kwak, Eunji Hwang, Tae-kyung Yoo, Beomseok Nam, Young-ri Choi","doi":"10.1109/CCGrid.2016.73","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate techniques to effectively orchestrate HDFS in-memory caching for Hadoop. We first evaluate a degree of benefit which each of various MapReduce applications can get from in-memory caching, i.e. cache affinity. We then propose an adaptive cache local scheduling algorithm that adaptively adjusts the waiting time of a MapReduce job in a queue for a cache local node. We set the waiting time to be proportional to the percentage of cached input data for the job. We also develop a cache affinity cache replacement algorithm that determines which block is cached and evicted based on the cache affinity of applications. Using various workloads consisting of multiple MapReduce applications, we conduct experimental study to demonstrate the effects of the proposed in-memory orchestration techniques. Our experimental results show that our enhanced Hadoop in-memory caching scheme improves the performance of the MapReduce workloads up to 18% and 10% against Hadoop that disables and enables HDFS in-memory caching, respectively.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"In-Memory Caching Orchestration for Hadoop\",\"authors\":\"J. Kwak, Eunji Hwang, Tae-kyung Yoo, Beomseok Nam, Young-ri Choi\",\"doi\":\"10.1109/CCGrid.2016.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate techniques to effectively orchestrate HDFS in-memory caching for Hadoop. We first evaluate a degree of benefit which each of various MapReduce applications can get from in-memory caching, i.e. cache affinity. We then propose an adaptive cache local scheduling algorithm that adaptively adjusts the waiting time of a MapReduce job in a queue for a cache local node. We set the waiting time to be proportional to the percentage of cached input data for the job. We also develop a cache affinity cache replacement algorithm that determines which block is cached and evicted based on the cache affinity of applications. Using various workloads consisting of multiple MapReduce applications, we conduct experimental study to demonstrate the effects of the proposed in-memory orchestration techniques. Our experimental results show that our enhanced Hadoop in-memory caching scheme improves the performance of the MapReduce workloads up to 18% and 10% against Hadoop that disables and enables HDFS in-memory caching, respectively.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们研究了为Hadoop有效编排HDFS内存缓存的技术。我们首先评估每个不同的MapReduce应用程序可以从内存缓存中获得的好处程度,即缓存关联。然后,我们提出了一种自适应缓存本地调度算法,该算法自适应地调整MapReduce作业在缓存本地节点队列中的等待时间。我们将等待时间设置为与作业缓存输入数据的百分比成比例。我们还开发了一种缓存关联缓存替换算法,该算法根据应用程序的缓存关联来确定缓存和驱逐哪个块。使用由多个MapReduce应用程序组成的各种工作负载,我们进行了实验研究,以证明所提出的内存编排技术的效果。我们的实验结果表明,与启用和禁用HDFS内存缓存的Hadoop相比,我们增强的Hadoop内存缓存方案将MapReduce工作负载的性能分别提高了18%和10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-Memory Caching Orchestration for Hadoop
In this paper, we investigate techniques to effectively orchestrate HDFS in-memory caching for Hadoop. We first evaluate a degree of benefit which each of various MapReduce applications can get from in-memory caching, i.e. cache affinity. We then propose an adaptive cache local scheduling algorithm that adaptively adjusts the waiting time of a MapReduce job in a queue for a cache local node. We set the waiting time to be proportional to the percentage of cached input data for the job. We also develop a cache affinity cache replacement algorithm that determines which block is cached and evicted based on the cache affinity of applications. Using various workloads consisting of multiple MapReduce applications, we conduct experimental study to demonstrate the effects of the proposed in-memory orchestration techniques. Our experimental results show that our enhanced Hadoop in-memory caching scheme improves the performance of the MapReduce workloads up to 18% and 10% against Hadoop that disables and enables HDFS in-memory caching, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era DTStorage: Dynamic Tape-Based Storage for Cost-Effective and Highly-Available Streaming Service Facilitating the Execution of HPC Workloads in Colombia through the Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1