A. Adamopoulos, P. Anninos, S. Likothanassis, G. Beligiannis, L. Skarlas, E. N. Demiris, D. Papadopoulos
{"title":"胎儿心磁图的进化自适应多模型预测算法","authors":"A. Adamopoulos, P. Anninos, S. Likothanassis, G. Beligiannis, L. Skarlas, E. N. Demiris, D. Papadopoulos","doi":"10.1109/ICDSP.2002.1028296","DOIUrl":null,"url":null,"abstract":"A novel technique for the analysis, nonlinear model identification and prediction of the fetal magnetocardiogram (f-MCG) is presented. f-MCGs can be recorded with the use of specific totally non-invasive superconductive quantum interference devices (SQUID). For the analysis and classification of the f-MCG signals we introduce an intelligent method that combines the following well known advanced signal processing techniques: the genetic algorithms (GA), the multimodel partitioning (MMP) theory and the extended Kalman filters (EKF). Simulations illustrate that the proposed method is selecting the correct model structure and identifies the model parameters in a sufficiently small number of iterations and tracks successfully changes in the signal, in real time. The information provided by the proposed analysis is easily interpreted and assessed by gynecologists and consist of the clinical status of the fetus. The proposed algorithm can be parallel implemented and also a VLSI implementation is feasible.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Evolutionary self-adaptive multimodel prediction algorithms of the fetal magnetocardiogram\",\"authors\":\"A. Adamopoulos, P. Anninos, S. Likothanassis, G. Beligiannis, L. Skarlas, E. N. Demiris, D. Papadopoulos\",\"doi\":\"10.1109/ICDSP.2002.1028296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel technique for the analysis, nonlinear model identification and prediction of the fetal magnetocardiogram (f-MCG) is presented. f-MCGs can be recorded with the use of specific totally non-invasive superconductive quantum interference devices (SQUID). For the analysis and classification of the f-MCG signals we introduce an intelligent method that combines the following well known advanced signal processing techniques: the genetic algorithms (GA), the multimodel partitioning (MMP) theory and the extended Kalman filters (EKF). Simulations illustrate that the proposed method is selecting the correct model structure and identifies the model parameters in a sufficiently small number of iterations and tracks successfully changes in the signal, in real time. The information provided by the proposed analysis is easily interpreted and assessed by gynecologists and consist of the clinical status of the fetus. The proposed algorithm can be parallel implemented and also a VLSI implementation is feasible.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary self-adaptive multimodel prediction algorithms of the fetal magnetocardiogram
A novel technique for the analysis, nonlinear model identification and prediction of the fetal magnetocardiogram (f-MCG) is presented. f-MCGs can be recorded with the use of specific totally non-invasive superconductive quantum interference devices (SQUID). For the analysis and classification of the f-MCG signals we introduce an intelligent method that combines the following well known advanced signal processing techniques: the genetic algorithms (GA), the multimodel partitioning (MMP) theory and the extended Kalman filters (EKF). Simulations illustrate that the proposed method is selecting the correct model structure and identifies the model parameters in a sufficiently small number of iterations and tracks successfully changes in the signal, in real time. The information provided by the proposed analysis is easily interpreted and assessed by gynecologists and consist of the clinical status of the fetus. The proposed algorithm can be parallel implemented and also a VLSI implementation is feasible.