基于CNN-Bigru-Attention模型的音频信号谱图多类语言识别

Ma Xueli, Mijit Ablimit, A. Hamdulla
{"title":"基于CNN-Bigru-Attention模型的音频信号谱图多类语言识别","authors":"Ma Xueli, Mijit Ablimit, A. Hamdulla","doi":"10.1109/PRML52754.2021.9520702","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of low recognition rate and uneven distribution of language information in language identification tasks, a language recognition method based on the CNN-Bigru-Attention model is proposed. This method first extracts the spectrogram of audio signals and converts it into a gray-scale spectrogram as input, then uses CNN (convolutional neural network) to capture the local features, and extracts the temporal features through the Bigru (Bidirectional gated recurrent unit), and then local features and temporal features are passed to the attention mechanism layer to focus on the information related to the language features and suppress useless information. Finally the classes of language is output through the fully connected layer. Experiments on the Common voice dataset show that the method has achieved good results and improves the performance of language identification.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiclass Language Identification Using CNN-Bigru-Attention Model on Spectrogram of Audio Signals\",\"authors\":\"Ma Xueli, Mijit Ablimit, A. Hamdulla\",\"doi\":\"10.1109/PRML52754.2021.9520702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of low recognition rate and uneven distribution of language information in language identification tasks, a language recognition method based on the CNN-Bigru-Attention model is proposed. This method first extracts the spectrogram of audio signals and converts it into a gray-scale spectrogram as input, then uses CNN (convolutional neural network) to capture the local features, and extracts the temporal features through the Bigru (Bidirectional gated recurrent unit), and then local features and temporal features are passed to the attention mechanism layer to focus on the information related to the language features and suppress useless information. Finally the classes of language is output through the fully connected layer. Experiments on the Common voice dataset show that the method has achieved good results and improves the performance of language identification.\",\"PeriodicalId\":429603,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRML52754.2021.9520702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对语言识别任务中存在的语言信息识别率低、分布不均匀等问题,提出了一种基于CNN-Bigru-Attention模型的语言识别方法。该方法首先提取音频信号的频谱图,并将其转换为灰度谱图作为输入,然后利用CNN(卷积神经网络)捕获局部特征,通过双向门控循环单元Bigru (Bidirectional gated recurrent unit)提取时间特征,然后将局部特征和时间特征传递给注意机制层,对与语言特征相关的信息进行集中处理,抑制无用信息。最后通过全连通层输出语言类。在通用语音数据集上的实验表明,该方法取得了良好的效果,提高了语言识别的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiclass Language Identification Using CNN-Bigru-Attention Model on Spectrogram of Audio Signals
Aiming at the problems of low recognition rate and uneven distribution of language information in language identification tasks, a language recognition method based on the CNN-Bigru-Attention model is proposed. This method first extracts the spectrogram of audio signals and converts it into a gray-scale spectrogram as input, then uses CNN (convolutional neural network) to capture the local features, and extracts the temporal features through the Bigru (Bidirectional gated recurrent unit), and then local features and temporal features are passed to the attention mechanism layer to focus on the information related to the language features and suppress useless information. Finally the classes of language is output through the fully connected layer. Experiments on the Common voice dataset show that the method has achieved good results and improves the performance of language identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Robot for Cleaning Garbage Based on OpenCV Research on Tibetan-Chinese Machine Translation Based on Multi-Strategy Processing A Survey of Object Detection Based on CNN and Transformer A Review of Segmentation and Classification for Retinal Optical Coherence Tomography Images Research on the Methods of Speech Synthesis Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1