GIT-12发生器上Al - Metal-Puff密度分布的估计

R. Cherdizov, V. Kokshenev, A. Shishlov, R. Baksht, Vladimir I. Oreshkin, A. Rousskikh, A. Zhigalin
{"title":"GIT-12发生器上Al - Metal-Puff密度分布的估计","authors":"R. Cherdizov, V. Kokshenev, A. Shishlov, R. Baksht, Vladimir I. Oreshkin, A. Rousskikh, A. Zhigalin","doi":"10.1109/EFRE47760.2020.9241935","DOIUrl":null,"url":null,"abstract":"Experiments on imploding metal-puff Z pinches with an outer plasma shell were performed at currents of 2–3 MA on the GIT-12 generator (4.7 MA, $1.7 \\mu \\mathrm{s}$) at the Institute of High Current Electronics (Tomsk). The outer plasma shell was produced by 48 plasma guns arranged in a circle of diameter 35 cm. The pinch plasma was generated by a vacuum arc which operated in a gap between an aluminum cathode and an aluminum anode. The initial mass density profiles of metal-puff pinches generated in different load configurations were estimated from experimentally obtained current and voltage waveforms, signals of magnetic probes, and images taken with a streak camera and an HSFC Pro four-frame optical camera. For radii $R$ larger than 0.2 cm, the initial radial mass density profile of a metal-puff pinch was approximated by three Gauss functions. The central part of the pinch with R < 0.2 cm was formed by an aluminum plasma jet with a uniform density. The density profiles in the adjacent jet region (0.2 < R < 2 cm) were provided by the contribution of the aluminum ions from the vacuum arc anode. The next density profile (2 < R < 14 cm) was probably determined by the mass contribution from the surface of the insulator near which the vacuum arc operated. The density peak at the periphery (14 < R < 16 cm) occurred due to the operation of the plasma guns at the diameter of 35 cm.","PeriodicalId":190249,"journal":{"name":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the Al Metal-Puff Density Profile on the Generator GIT-12\",\"authors\":\"R. Cherdizov, V. Kokshenev, A. Shishlov, R. Baksht, Vladimir I. Oreshkin, A. Rousskikh, A. Zhigalin\",\"doi\":\"10.1109/EFRE47760.2020.9241935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments on imploding metal-puff Z pinches with an outer plasma shell were performed at currents of 2–3 MA on the GIT-12 generator (4.7 MA, $1.7 \\\\mu \\\\mathrm{s}$) at the Institute of High Current Electronics (Tomsk). The outer plasma shell was produced by 48 plasma guns arranged in a circle of diameter 35 cm. The pinch plasma was generated by a vacuum arc which operated in a gap between an aluminum cathode and an aluminum anode. The initial mass density profiles of metal-puff pinches generated in different load configurations were estimated from experimentally obtained current and voltage waveforms, signals of magnetic probes, and images taken with a streak camera and an HSFC Pro four-frame optical camera. For radii $R$ larger than 0.2 cm, the initial radial mass density profile of a metal-puff pinch was approximated by three Gauss functions. The central part of the pinch with R < 0.2 cm was formed by an aluminum plasma jet with a uniform density. The density profiles in the adjacent jet region (0.2 < R < 2 cm) were provided by the contribution of the aluminum ions from the vacuum arc anode. The next density profile (2 < R < 14 cm) was probably determined by the mass contribution from the surface of the insulator near which the vacuum arc operated. The density peak at the periphery (14 < R < 16 cm) occurred due to the operation of the plasma guns at the diameter of 35 cm.\",\"PeriodicalId\":190249,\"journal\":{\"name\":\"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFRE47760.2020.9241935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFRE47760.2020.9241935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在托木斯克大电流电子学研究所的GIT-12发生器(4.7 MA, $1.7 \mu \ mathm {s}$)上,以2-3 MA的电流进行了外等离子体壳内爆金属膨胀Z钳的实验。外层等离子体外壳由48支等离子体枪组成,排列成直径35厘米的圆形。掐尖等离子体是由真空电弧在铝阴极和铝阳极之间的间隙中产生的。根据实验获得的电流和电压波形、磁探头信号以及条纹相机和HSFC Pro四帧光学相机拍摄的图像,估计了不同负载配置下产生的金属泡芙缩紧的初始质量密度分布。当半径R大于0.2 cm时,金属抽吸的初始径向质量密度分布近似为三个高斯函数。用密度均匀的铝等离子体射流形成R < 0.2 cm的掐痕中心部分。邻近喷射区(0.2 < R < 2 cm)的密度分布由真空电弧阳极铝离子的贡献提供。下一个密度分布(2 < R < 14 cm)可能是由真空电弧运行附近绝缘子表面的质量贡献决定的。等离子体枪在直径为35 cm处运行,在外围(14 < R < 16 cm)处出现密度峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of the Al Metal-Puff Density Profile on the Generator GIT-12
Experiments on imploding metal-puff Z pinches with an outer plasma shell were performed at currents of 2–3 MA on the GIT-12 generator (4.7 MA, $1.7 \mu \mathrm{s}$) at the Institute of High Current Electronics (Tomsk). The outer plasma shell was produced by 48 plasma guns arranged in a circle of diameter 35 cm. The pinch plasma was generated by a vacuum arc which operated in a gap between an aluminum cathode and an aluminum anode. The initial mass density profiles of metal-puff pinches generated in different load configurations were estimated from experimentally obtained current and voltage waveforms, signals of magnetic probes, and images taken with a streak camera and an HSFC Pro four-frame optical camera. For radii $R$ larger than 0.2 cm, the initial radial mass density profile of a metal-puff pinch was approximated by three Gauss functions. The central part of the pinch with R < 0.2 cm was formed by an aluminum plasma jet with a uniform density. The density profiles in the adjacent jet region (0.2 < R < 2 cm) were provided by the contribution of the aluminum ions from the vacuum arc anode. The next density profile (2 < R < 14 cm) was probably determined by the mass contribution from the surface of the insulator near which the vacuum arc operated. The density peak at the periphery (14 < R < 16 cm) occurred due to the operation of the plasma guns at the diameter of 35 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Materials and Coatings for Nuclear Technology Higher Harmonics in the Output Spectrum of Microwave Sources Based on Nonlaminar Electron Beams (Analysis of the Effect of Transverse and Longitudinal Bunches of the Space Charge) Pulse Source of Electrons Based on the Pyroeffect Features of the Synthesis of TiCAl (Fe2O3/TiO2) Metal Matrix Composites under Nonequilibrium Conditions Volume Discharges in CO2-Laser Mixtures at Atmospheric Pressures With High Energy Density
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1