基于活动足迹方法的智能环境入侵检测算法

Agostino Forestiero
{"title":"基于活动足迹方法的智能环境入侵检测算法","authors":"Agostino Forestiero","doi":"10.1109/AIKE48582.2020.00027","DOIUrl":null,"url":null,"abstract":"Discovering anomalous data or behaviors is fundamental to obtain critical security information such as intrusion detections, faults and system failures. The limited resources, like computing and storage, make conventional techniques to design Intrusion Detection Systems (IDS) not particularly suitable for smart environments. This paper proposes a novel multiagent algorithm leveraging on devices activity footprints for intrusion detection in Internet of Things environment. Smart objects are mapped with real-valued vectors obtained through the IoT2Vec model, a word embedding technique able to capture the semantic context of device activities and represent these ones in dense vectors. The vectors are assigned to agents, which are spread onto a 2D virtual space, where they move following the rules of a bio-inspired model, the flocking model. A similarity function, applied to the associated vectors, drives the agents for a selective application of the movement rules. The outcome is the emergence of agent groups aggregated on the basis of the activities of their associated devices. Thus, it is possible to easily individuate isolated agents (i.e. devices with dissimilar activity from all), representing potential intruders or with anomalous behaviors to be monitored. Preliminary results confirm the validity of the approach.","PeriodicalId":370671,"journal":{"name":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intrusion detection algorithm in Smart Environments featuring activity footprints approach\",\"authors\":\"Agostino Forestiero\",\"doi\":\"10.1109/AIKE48582.2020.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering anomalous data or behaviors is fundamental to obtain critical security information such as intrusion detections, faults and system failures. The limited resources, like computing and storage, make conventional techniques to design Intrusion Detection Systems (IDS) not particularly suitable for smart environments. This paper proposes a novel multiagent algorithm leveraging on devices activity footprints for intrusion detection in Internet of Things environment. Smart objects are mapped with real-valued vectors obtained through the IoT2Vec model, a word embedding technique able to capture the semantic context of device activities and represent these ones in dense vectors. The vectors are assigned to agents, which are spread onto a 2D virtual space, where they move following the rules of a bio-inspired model, the flocking model. A similarity function, applied to the associated vectors, drives the agents for a selective application of the movement rules. The outcome is the emergence of agent groups aggregated on the basis of the activities of their associated devices. Thus, it is possible to easily individuate isolated agents (i.e. devices with dissimilar activity from all), representing potential intruders or with anomalous behaviors to be monitored. Preliminary results confirm the validity of the approach.\",\"PeriodicalId\":370671,\"journal\":{\"name\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE48582.2020.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE48582.2020.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

发现异常数据或异常行为是获取入侵检测、故障、系统故障等关键安全信息的基础。有限的资源,如计算和存储,使得传统的技术来设计入侵检测系统(IDS)不是特别适合智能环境。针对物联网环境下的入侵检测问题,提出了一种利用设备活动足迹的多智能体算法。智能对象与通过IoT2Vec模型获得的实值向量进行映射,该模型是一种词嵌入技术,能够捕获设备活动的语义上下文,并将这些语义上下文表示为密集向量。这些向量被分配给代理,这些代理被分散到一个2D虚拟空间中,在那里它们按照生物启发模型的规则移动,即群集模型。应用于相关向量的相似函数驱动代理选择性地应用运动规则。其结果是出现了基于其相关设备的活动而聚集的代理组。因此,可以很容易地对孤立的代理(即与所有代理具有不同活动的设备)进行个体化,代表潜在的入侵者或要监视的异常行为。初步结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrusion detection algorithm in Smart Environments featuring activity footprints approach
Discovering anomalous data or behaviors is fundamental to obtain critical security information such as intrusion detections, faults and system failures. The limited resources, like computing and storage, make conventional techniques to design Intrusion Detection Systems (IDS) not particularly suitable for smart environments. This paper proposes a novel multiagent algorithm leveraging on devices activity footprints for intrusion detection in Internet of Things environment. Smart objects are mapped with real-valued vectors obtained through the IoT2Vec model, a word embedding technique able to capture the semantic context of device activities and represent these ones in dense vectors. The vectors are assigned to agents, which are spread onto a 2D virtual space, where they move following the rules of a bio-inspired model, the flocking model. A similarity function, applied to the associated vectors, drives the agents for a selective application of the movement rules. The outcome is the emergence of agent groups aggregated on the basis of the activities of their associated devices. Thus, it is possible to easily individuate isolated agents (i.e. devices with dissimilar activity from all), representing potential intruders or with anomalous behaviors to be monitored. Preliminary results confirm the validity of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence Design on Embedded Board with Edge Computing for Vehicle Applications Analysis of Permission Selection Techniques in Machine Learning-based Malicious App Detection Using Cultural Algorithms with Common Value Auctions to Provide Sustainability in Complex Dynamic Environments Knowledge Graph Visualization: Challenges, Framework, and Implementation Evaluation of Classification algorithms for Distributed Denial of Service Attack Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1