利用多模态信息预测人格特征

WCPR '14 Pub Date : 2014-11-07 DOI:10.1145/2659522.2659531
Firoj Alam, G. Riccardi
{"title":"利用多模态信息预测人格特征","authors":"Firoj Alam, G. Riccardi","doi":"10.1145/2659522.2659531","DOIUrl":null,"url":null,"abstract":"Measuring personality traits has a long story in psychology where analysis has been done by asking sets of questions. These question sets (inventories) have been designed by investigating lexical terms that we use in our daily communications or by analyzing biological phenomena. Whether consciously or unconsciously we express our thoughts and behaviors when communicating with others, either verbally, non-verbally or using visual expressions. Recently, research in behavioral signal processing has focused on automatically measuring personality traits using different behavioral cues that appear in our daily communication. In this study, we present an approach to automatically recognize personality traits using a video-blog (vlog) corpus, consisting of transcription and extracted audio-visual features. We analyzed linguistic, psycholinguistic and emotional features in addition to the audio-visual features provided with the dataset. We also studied whether we can better predict a trait by identifying other traits. Using our best models we obtained very promising results compared to the official baseline.","PeriodicalId":423934,"journal":{"name":"WCPR '14","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Predicting Personality Traits using Multimodal Information\",\"authors\":\"Firoj Alam, G. Riccardi\",\"doi\":\"10.1145/2659522.2659531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring personality traits has a long story in psychology where analysis has been done by asking sets of questions. These question sets (inventories) have been designed by investigating lexical terms that we use in our daily communications or by analyzing biological phenomena. Whether consciously or unconsciously we express our thoughts and behaviors when communicating with others, either verbally, non-verbally or using visual expressions. Recently, research in behavioral signal processing has focused on automatically measuring personality traits using different behavioral cues that appear in our daily communication. In this study, we present an approach to automatically recognize personality traits using a video-blog (vlog) corpus, consisting of transcription and extracted audio-visual features. We analyzed linguistic, psycholinguistic and emotional features in addition to the audio-visual features provided with the dataset. We also studied whether we can better predict a trait by identifying other traits. Using our best models we obtained very promising results compared to the official baseline.\",\"PeriodicalId\":423934,\"journal\":{\"name\":\"WCPR '14\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WCPR '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2659522.2659531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WCPR '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2659522.2659531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

测量人格特质在心理学上有很长的历史,分析是通过问一系列问题来完成的。这些问题集(清单)是通过调查我们在日常交流中使用的词汇术语或通过分析生物现象而设计的。在与他人交流时,无论是有意还是无意,我们都会用语言、非语言或视觉表达来表达自己的想法和行为。最近,行为信号处理的研究主要集中在使用我们日常交流中出现的不同行为线索自动测量人格特征。在这项研究中,我们提出了一种使用视频博客(vlog)语料库自动识别人格特征的方法,该语料库由转录和提取的视听特征组成。除了数据集提供的视听特征外,我们还分析了语言、心理语言和情感特征。我们还研究了我们是否可以通过识别其他特征来更好地预测一个特征。使用我们最好的模型,与官方基线相比,我们获得了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Personality Traits using Multimodal Information
Measuring personality traits has a long story in psychology where analysis has been done by asking sets of questions. These question sets (inventories) have been designed by investigating lexical terms that we use in our daily communications or by analyzing biological phenomena. Whether consciously or unconsciously we express our thoughts and behaviors when communicating with others, either verbally, non-verbally or using visual expressions. Recently, research in behavioral signal processing has focused on automatically measuring personality traits using different behavioral cues that appear in our daily communication. In this study, we present an approach to automatically recognize personality traits using a video-blog (vlog) corpus, consisting of transcription and extracted audio-visual features. We analyzed linguistic, psycholinguistic and emotional features in addition to the audio-visual features provided with the dataset. We also studied whether we can better predict a trait by identifying other traits. Using our best models we obtained very promising results compared to the official baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Personality Traits using Multimodal Information Evaluating Content-Independent Features for Personality Recognition Look! Who's Talking?: Projection of Extraversion Across Different Social Contexts The Impact of Affective Verbal Content on Predicting Personality Impressions in YouTube Videos A Multivariate Regression Approach to Personality Impression Recognition of Vloggers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1