钨的精炼和制造过程中含钨纤维的存在。

J. McKernan, M. Toraason, J. Fernback, M. Petersen
{"title":"钨的精炼和制造过程中含钨纤维的存在。","authors":"J. McKernan, M. Toraason, J. Fernback, M. Petersen","doi":"10.1093/annhyg/men078","DOIUrl":null,"url":null,"abstract":"In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 microm, diameter >0.01 microm and aspect ratios > or =3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length approximately 3 microm and diameter approximately 0.3 microm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter < or = 10 microm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting 'B' rules (length > 5 microm, diameter < 3 microm and aspect ratio > or = 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm(-3), with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers.","PeriodicalId":342592,"journal":{"name":"The Annals of occupational hygiene","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Presence of tungsten-containing fibers in tungsten refining and manufacturing processes.\",\"authors\":\"J. McKernan, M. Toraason, J. Fernback, M. Petersen\",\"doi\":\"10.1093/annhyg/men078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 microm, diameter >0.01 microm and aspect ratios > or =3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length approximately 3 microm and diameter approximately 0.3 microm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter < or = 10 microm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting 'B' rules (length > 5 microm, diameter < 3 microm and aspect ratio > or = 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm(-3), with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers.\",\"PeriodicalId\":342592,\"journal\":{\"name\":\"The Annals of occupational hygiene\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of occupational hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/annhyg/men078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of occupational hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/annhyg/men078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在钨的精炼和制造过程中,在钨粉的生产过程中,通常会形成一系列的钨氧化物作为中间体。本研究对美国钨精炼和制造工业中空气中含钨纤维的尺寸、元素组成和浓度进行了表征。采用美国职业安全与卫生研究所(NIOSH)的纤维取样计数方法,在员工正常工作过程中采集了7个个人呼吸区和62个区域的空气样本,并进行了分析,以确定纤维的尺寸、组成和空气浓度。混合模型用于确定潜在决定因素与空气中纤维浓度之间的关系。透射电镜分析结果表明,69份空气样品中有35份存在长度>0.5微米、直径>0.01微米、长径比>或=3:1的空气纤维。总的来说,检测到的空中纤维几何平均长度约为3微米,直径约为0.3微米。经鉴定的97%的空气纤维位于胸椎部分(即空气动力直径<或= 10微米)。能量色散x射线光谱分析结果表明,在渗碳过程之前,空气中的纤维主要由钨和氧组成,其他元素被检测到微量。根据NIOSH纤维计数“B”规则(长度> 5微米,直径< 3微米,长径比>或= 5:1),空气中的纤维浓度范围从低于检测限到0.085纤维厘米(-3),其中煅烧与最高的空气浓度有关。混合模型过程表明,工艺温度与空气中纤维浓度有轻微的显著关系。这一发现是意料之中的,因为加热过程(如煅烧)产生了最高的空气纤维浓度。在这一职业环境中发现的空气中含钨纤维需要在类似环境中得到证实,并表明需要获得关于这些纤维的耐久性和相关健康影响的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Presence of tungsten-containing fibers in tungsten refining and manufacturing processes.
In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 microm, diameter >0.01 microm and aspect ratios > or =3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length approximately 3 microm and diameter approximately 0.3 microm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter < or = 10 microm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting 'B' rules (length > 5 microm, diameter < 3 microm and aspect ratio > or = 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm(-3), with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Response to Article by Prof. Hans Kromhout, Hygiene Without Numbers. The Validity and Applicability of Using a Generic Exposure Assessment Model for Occupational Exposure to Nano-Objects and Their Aggregates and Agglomerates. Occupational Exposure to Polycyclic Aromatic Hydrocarbons in Polish Coke Plant Workers. A New Miniature Respirable Sampler for In-mask Sampling: Part 2-Tests Performed Inside the Mask. When Are Risk Analyses on Job Titles Informative?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1