Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, Lei Qiao
{"title":"神经结构搜索网络的分层内存约束算子调度","authors":"Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, Lei Qiao","doi":"10.1145/3489517.3530472","DOIUrl":null,"url":null,"abstract":"Neural Architecture Search (NAS) is widely used in industry, searching for neural networks meeting task requirements. Meanwhile, it faces a challenge in scheduling networks satisfying memory constraints. This paper proposes HMCOS that performs hierarchical memory-constrained operator scheduling of NAS networks: given a network, HMCOS constructs a hierarchical computation graph and employs an iterative scheduling algorithm to progressively reduce peak memory footprints. We evaluate HMCOS against RPO and Serenity (two popular scheduling techniques). The results show that HMCOS outperforms existing techniques in supporting more NAS networks, reducing 8.7~42.4% of peak memory footprints, and achieving 137--283x of speedups in scheduling.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical memory-constrained operator scheduling of neural architecture search networks\",\"authors\":\"Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, Lei Qiao\",\"doi\":\"10.1145/3489517.3530472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Architecture Search (NAS) is widely used in industry, searching for neural networks meeting task requirements. Meanwhile, it faces a challenge in scheduling networks satisfying memory constraints. This paper proposes HMCOS that performs hierarchical memory-constrained operator scheduling of NAS networks: given a network, HMCOS constructs a hierarchical computation graph and employs an iterative scheduling algorithm to progressively reduce peak memory footprints. We evaluate HMCOS against RPO and Serenity (two popular scheduling techniques). The results show that HMCOS outperforms existing techniques in supporting more NAS networks, reducing 8.7~42.4% of peak memory footprints, and achieving 137--283x of speedups in scheduling.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical memory-constrained operator scheduling of neural architecture search networks
Neural Architecture Search (NAS) is widely used in industry, searching for neural networks meeting task requirements. Meanwhile, it faces a challenge in scheduling networks satisfying memory constraints. This paper proposes HMCOS that performs hierarchical memory-constrained operator scheduling of NAS networks: given a network, HMCOS constructs a hierarchical computation graph and employs an iterative scheduling algorithm to progressively reduce peak memory footprints. We evaluate HMCOS against RPO and Serenity (two popular scheduling techniques). The results show that HMCOS outperforms existing techniques in supporting more NAS networks, reducing 8.7~42.4% of peak memory footprints, and achieving 137--283x of speedups in scheduling.