{"title":"大规模半监督线性支持向量机","authors":"Vikas Sindhwani, S. Keerthi","doi":"10.1145/1148170.1148253","DOIUrl":null,"url":null,"abstract":"Large scale learning is often realistic only in a semi-supervised setting where a small set of labeled examples is available together with a large collection of unlabeled data. In many information retrieval and data mining applications, linear classifiers are strongly preferred because of their ease of implementation, interpretability and empirical performance. In this work, we present a family of semi-supervised linear support vector classifiers that are designed to handle partially-labeled sparse datasets with possibly very large number of examples and features. At their core, our algorithms employ recently developed modified finite Newton techniques. Our contributions in this paper are as follows: (a) We provide an implementation of Transductive SVM (TSVM) that is significantly more efficient and scalable than currently used dual techniques, for linear classification problems involving large, sparse datasets. (b) We propose a variant of TSVM that involves multiple switching of labels. Experimental results show that this variant provides an order of magnitude further improvement in training efficiency. (c) We present a new algorithm for semi-supervised learning based on a Deterministic Annealing (DA) approach. This algorithm alleviates the problem of local minimum in the TSVM optimization procedure while also being computationally attractive. We conduct an empirical study on several document classification tasks which confirms the value of our methods in large scale semi-supervised settings.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"260","resultStr":"{\"title\":\"Large scale semi-supervised linear SVMs\",\"authors\":\"Vikas Sindhwani, S. Keerthi\",\"doi\":\"10.1145/1148170.1148253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large scale learning is often realistic only in a semi-supervised setting where a small set of labeled examples is available together with a large collection of unlabeled data. In many information retrieval and data mining applications, linear classifiers are strongly preferred because of their ease of implementation, interpretability and empirical performance. In this work, we present a family of semi-supervised linear support vector classifiers that are designed to handle partially-labeled sparse datasets with possibly very large number of examples and features. At their core, our algorithms employ recently developed modified finite Newton techniques. Our contributions in this paper are as follows: (a) We provide an implementation of Transductive SVM (TSVM) that is significantly more efficient and scalable than currently used dual techniques, for linear classification problems involving large, sparse datasets. (b) We propose a variant of TSVM that involves multiple switching of labels. Experimental results show that this variant provides an order of magnitude further improvement in training efficiency. (c) We present a new algorithm for semi-supervised learning based on a Deterministic Annealing (DA) approach. This algorithm alleviates the problem of local minimum in the TSVM optimization procedure while also being computationally attractive. We conduct an empirical study on several document classification tasks which confirms the value of our methods in large scale semi-supervised settings.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"260\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 260

摘要

大规模学习通常只有在半监督的环境下才能实现,在这种环境下,一小部分有标签的例子与大量未标记的数据一起可用。在许多信息检索和数据挖掘应用中,线性分类器因其易于实现、可解释性和经验性能而备受青睐。在这项工作中,我们提出了一组半监督线性支持向量分类器,旨在处理可能具有大量示例和特征的部分标记稀疏数据集。在其核心,我们的算法采用了最近开发的改进有限牛顿技术。我们在本文中的贡献如下:(a)对于涉及大型稀疏数据集的线性分类问题,我们提供了一种比目前使用的对偶技术更有效和可扩展的转导支持向量机(TSVM)的实现。(b)我们提出了一种涉及标签多次交换的TSVM变体。实验结果表明,该算法将训练效率提高了一个数量级。(c)提出了一种基于确定性退火(DA)方法的半监督学习新算法。该算法在解决TSVM优化过程中的局部最小值问题的同时,在计算上也很有吸引力。我们对几个文档分类任务进行了实证研究,证实了我们的方法在大规模半监督设置中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large scale semi-supervised linear SVMs
Large scale learning is often realistic only in a semi-supervised setting where a small set of labeled examples is available together with a large collection of unlabeled data. In many information retrieval and data mining applications, linear classifiers are strongly preferred because of their ease of implementation, interpretability and empirical performance. In this work, we present a family of semi-supervised linear support vector classifiers that are designed to handle partially-labeled sparse datasets with possibly very large number of examples and features. At their core, our algorithms employ recently developed modified finite Newton techniques. Our contributions in this paper are as follows: (a) We provide an implementation of Transductive SVM (TSVM) that is significantly more efficient and scalable than currently used dual techniques, for linear classification problems involving large, sparse datasets. (b) We propose a variant of TSVM that involves multiple switching of labels. Experimental results show that this variant provides an order of magnitude further improvement in training efficiency. (c) We present a new algorithm for semi-supervised learning based on a Deterministic Annealing (DA) approach. This algorithm alleviates the problem of local minimum in the TSVM optimization procedure while also being computationally attractive. We conduct an empirical study on several document classification tasks which confirms the value of our methods in large scale semi-supervised settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1