S. Chayya, A. Hijazi, Anis Daou, Ali Alaaeddine, Mohamad Sakr, G. Younes, M. El-Dakdouki
{"title":"在甲酸-三乙胺混合物的存在下钯催化4 ' -(苯乙基)苯乙酮的选择性还原","authors":"S. Chayya, A. Hijazi, Anis Daou, Ali Alaaeddine, Mohamad Sakr, G. Younes, M. El-Dakdouki","doi":"10.54729/ljph1001","DOIUrl":null,"url":null,"abstract":"An efficient and straightforward palladium acetylacetonate-catalyzed hydrogen transfer of 4'- (phenylethynyl)acetophenone was developed in this study. Formic Acid was found to be the best hydrogen source in this catalytic system in the presence of triethylamine. Excellent conversions and selectivity were obtained in reducing the starting internal aromatic alkyne to either (E)-1-(4- styrylphenyl)ethanone or an interesting cyclic product, 1-(phenanthrene-3-yl)ethenone, over the ketone functional group present. Over-reduction was rarely seen. The reaction conditions were optimized in terms of the choice of the palladium catalyst, temperature, solvent, and the H-donor/base combination. Using this catalytic system, a one-step synthetic pathway of the hindered cyclic ketone was afforded in excellent yields.","PeriodicalId":124185,"journal":{"name":"BAU Journal - Science and Technology","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PALLADIUM (II)-CATALYZED SELECTIVE REDUCTION OF 4’-(PHENYLETHYNL)ACETOPHENONE IN THE PRESENCE OF A FORMIC ACID-TRIETHYLAMINE MIXTURE\",\"authors\":\"S. Chayya, A. Hijazi, Anis Daou, Ali Alaaeddine, Mohamad Sakr, G. Younes, M. El-Dakdouki\",\"doi\":\"10.54729/ljph1001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient and straightforward palladium acetylacetonate-catalyzed hydrogen transfer of 4'- (phenylethynyl)acetophenone was developed in this study. Formic Acid was found to be the best hydrogen source in this catalytic system in the presence of triethylamine. Excellent conversions and selectivity were obtained in reducing the starting internal aromatic alkyne to either (E)-1-(4- styrylphenyl)ethanone or an interesting cyclic product, 1-(phenanthrene-3-yl)ethenone, over the ketone functional group present. Over-reduction was rarely seen. The reaction conditions were optimized in terms of the choice of the palladium catalyst, temperature, solvent, and the H-donor/base combination. Using this catalytic system, a one-step synthetic pathway of the hindered cyclic ketone was afforded in excellent yields.\",\"PeriodicalId\":124185,\"journal\":{\"name\":\"BAU Journal - Science and Technology\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BAU Journal - Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54729/ljph1001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BAU Journal - Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54729/ljph1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PALLADIUM (II)-CATALYZED SELECTIVE REDUCTION OF 4’-(PHENYLETHYNL)ACETOPHENONE IN THE PRESENCE OF A FORMIC ACID-TRIETHYLAMINE MIXTURE
An efficient and straightforward palladium acetylacetonate-catalyzed hydrogen transfer of 4'- (phenylethynyl)acetophenone was developed in this study. Formic Acid was found to be the best hydrogen source in this catalytic system in the presence of triethylamine. Excellent conversions and selectivity were obtained in reducing the starting internal aromatic alkyne to either (E)-1-(4- styrylphenyl)ethanone or an interesting cyclic product, 1-(phenanthrene-3-yl)ethenone, over the ketone functional group present. Over-reduction was rarely seen. The reaction conditions were optimized in terms of the choice of the palladium catalyst, temperature, solvent, and the H-donor/base combination. Using this catalytic system, a one-step synthetic pathway of the hindered cyclic ketone was afforded in excellent yields.