面向隐私感知的电动汽车架构

Christian Plappert, Jonathan Stancke, Lukas Jäger
{"title":"面向隐私感知的电动汽车架构","authors":"Christian Plappert, Jonathan Stancke, Lukas Jäger","doi":"10.1109/pdp55904.2022.00048","DOIUrl":null,"url":null,"abstract":"Connected vehicles need to generate, store, process, and exchange a multitude of information with their environment. Much of this information is privacy-critical and thus regulated by privacy laws like the GDPR for Europe. In this paper, we analyze and rate exemplary data (flows) of the electric driving domain with regard to their criticality based on a reference architecture. We classify the corresponding ECUs based on their processed privacy-critical data and propose technical mitigation measures and technologies in form of generic privacy-enhancing building blocks according to the classification and requirements derived from the GDPR.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Privacy-Aware Electric Vehicle Architecture\",\"authors\":\"Christian Plappert, Jonathan Stancke, Lukas Jäger\",\"doi\":\"10.1109/pdp55904.2022.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connected vehicles need to generate, store, process, and exchange a multitude of information with their environment. Much of this information is privacy-critical and thus regulated by privacy laws like the GDPR for Europe. In this paper, we analyze and rate exemplary data (flows) of the electric driving domain with regard to their criticality based on a reference architecture. We classify the corresponding ECUs based on their processed privacy-critical data and propose technical mitigation measures and technologies in form of generic privacy-enhancing building blocks according to the classification and requirements derived from the GDPR.\",\"PeriodicalId\":210759,\"journal\":{\"name\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pdp55904.2022.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联网车辆需要生成、存储、处理和与环境交换大量信息。这些信息中的大部分都是隐私关键信息,因此受到隐私法(如欧洲的GDPR)的监管。在本文中,我们基于一个参考体系结构,分析和评价了电力驱动领域的示例数据(流)的临界性。我们根据处理的隐私关键数据对相应的ecu进行分类,并根据GDPR的分类和要求,以通用隐私增强构建块的形式提出技术缓解措施和技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Privacy-Aware Electric Vehicle Architecture
Connected vehicles need to generate, store, process, and exchange a multitude of information with their environment. Much of this information is privacy-critical and thus regulated by privacy laws like the GDPR for Europe. In this paper, we analyze and rate exemplary data (flows) of the electric driving domain with regard to their criticality based on a reference architecture. We classify the corresponding ECUs based on their processed privacy-critical data and propose technical mitigation measures and technologies in form of generic privacy-enhancing building blocks according to the classification and requirements derived from the GDPR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Experiments on High Performance Anomaly Detection Advancing Database System Operators with Near-Data Processing A Parallel Approximation Algorithm for the Steiner Forest Problem NoaSci: A Numerical Object Array Library for I/O of Scientific Applications on Object Storage Load Balancing of the Parallel Execution of Two Dimensional Partitioned Cellular Automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1