{"title":"利用充电均衡控制器设计提高电池管理系统性能","authors":"A. Sallam, Abdel-azim Sopieh, Essam Nabil","doi":"10.21608/mjeer.2022.109809.1044","DOIUrl":null,"url":null,"abstract":"- A precision model of a battery charge equalization controller (BCEC) is developed in this research paper to control a series-connected Li-ion battery with a number of cells (n). The BCEC's main task is to manage each cell individually by monitoring and balancing all cells by charging the over-discharged cell or discharging the overcharged one. An intelligent fuzzy logic controller (FLC) and a single sliding mode controller (SSMC) are evolved to activate bidirectional cell switches and regulate a chopper circuit's direct current (DC-DC flyback converter) with PWM generation. The model can be implemented in electric vehicle (E.V.) applications to get benefit from the Li-ion battery. It consists of individual models of an E.V., cells of Li-ion battery, a fly-back converter, and a charge equalization controller for charging and discharging are integrated with n series-connected cells of Li-ion battery. The simulation results confirm that the proposed schemes have achieved enhanced performance with balancing the Li-ion cells as the state of charge (SOC) difference between cells is maintained to be 0.1% while maintaining the battery operation with a safe region. The BCEC is compared with the existing controllers based on efficiency, power losses, performance, and cost and has achieved better results.","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Battery Management System Performance Enhancement using Charge Equalization Controller Design\",\"authors\":\"A. Sallam, Abdel-azim Sopieh, Essam Nabil\",\"doi\":\"10.21608/mjeer.2022.109809.1044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- A precision model of a battery charge equalization controller (BCEC) is developed in this research paper to control a series-connected Li-ion battery with a number of cells (n). The BCEC's main task is to manage each cell individually by monitoring and balancing all cells by charging the over-discharged cell or discharging the overcharged one. An intelligent fuzzy logic controller (FLC) and a single sliding mode controller (SSMC) are evolved to activate bidirectional cell switches and regulate a chopper circuit's direct current (DC-DC flyback converter) with PWM generation. The model can be implemented in electric vehicle (E.V.) applications to get benefit from the Li-ion battery. It consists of individual models of an E.V., cells of Li-ion battery, a fly-back converter, and a charge equalization controller for charging and discharging are integrated with n series-connected cells of Li-ion battery. The simulation results confirm that the proposed schemes have achieved enhanced performance with balancing the Li-ion cells as the state of charge (SOC) difference between cells is maintained to be 0.1% while maintaining the battery operation with a safe region. The BCEC is compared with the existing controllers based on efficiency, power losses, performance, and cost and has achieved better results.\",\"PeriodicalId\":218019,\"journal\":{\"name\":\"Menoufia Journal of Electronic Engineering Research\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Menoufia Journal of Electronic Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjeer.2022.109809.1044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2022.109809.1044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Battery Management System Performance Enhancement using Charge Equalization Controller Design
- A precision model of a battery charge equalization controller (BCEC) is developed in this research paper to control a series-connected Li-ion battery with a number of cells (n). The BCEC's main task is to manage each cell individually by monitoring and balancing all cells by charging the over-discharged cell or discharging the overcharged one. An intelligent fuzzy logic controller (FLC) and a single sliding mode controller (SSMC) are evolved to activate bidirectional cell switches and regulate a chopper circuit's direct current (DC-DC flyback converter) with PWM generation. The model can be implemented in electric vehicle (E.V.) applications to get benefit from the Li-ion battery. It consists of individual models of an E.V., cells of Li-ion battery, a fly-back converter, and a charge equalization controller for charging and discharging are integrated with n series-connected cells of Li-ion battery. The simulation results confirm that the proposed schemes have achieved enhanced performance with balancing the Li-ion cells as the state of charge (SOC) difference between cells is maintained to be 0.1% while maintaining the battery operation with a safe region. The BCEC is compared with the existing controllers based on efficiency, power losses, performance, and cost and has achieved better results.