基于联邦学习的联合异常检测和移动预测框架

Zezhang Yang, Jian Li, Ping Yang
{"title":"基于联邦学习的联合异常检测和移动预测框架","authors":"Zezhang Yang, Jian Li, Ping Yang","doi":"10.4108/eai.21-10-2021.171595","DOIUrl":null,"url":null,"abstract":"With the proliferation of mobile devices and smart cameras, detecting anomalies and predicting their mobility are critical for enhancing safety in ubiquitous computing systems. Due to data privacy regulations and limited communication bandwidth, it is infeasible to collect, transmit, and store all data from mobile devices at a central location. To overcome this challenge, we propose FedADMP, a federated learning based joint Anomaly Detection and Mobility Prediction framework. FedADMP adaptively splits the training process between the server and clients to reduce computation loads on clients. To protect the privacy of user data, clients in FedADMP upload only intermediate model parameters to the cloud server. We also develop a di ff erential privacy method to prevent the cloud server and external attackers from inferring private information during the model upload procedure. Extensive experiments using real-world datasets show that FedADMP consistently outperforms existing methods.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FedADMP: A Joint Anomaly Detection and Mobility Prediction Framework via Federated Learning\",\"authors\":\"Zezhang Yang, Jian Li, Ping Yang\",\"doi\":\"10.4108/eai.21-10-2021.171595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of mobile devices and smart cameras, detecting anomalies and predicting their mobility are critical for enhancing safety in ubiquitous computing systems. Due to data privacy regulations and limited communication bandwidth, it is infeasible to collect, transmit, and store all data from mobile devices at a central location. To overcome this challenge, we propose FedADMP, a federated learning based joint Anomaly Detection and Mobility Prediction framework. FedADMP adaptively splits the training process between the server and clients to reduce computation loads on clients. To protect the privacy of user data, clients in FedADMP upload only intermediate model parameters to the cloud server. We also develop a di ff erential privacy method to prevent the cloud server and external attackers from inferring private information during the model upload procedure. Extensive experiments using real-world datasets show that FedADMP consistently outperforms existing methods.\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.21-10-2021.171595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.21-10-2021.171595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着移动设备和智能摄像头的普及,检测异常并预测其移动性对于提高普适计算系统的安全性至关重要。由于数据隐私法规和有限的通信带宽,在一个中心位置收集、传输和存储来自移动设备的所有数据是不可行的。为了克服这一挑战,我们提出了基于联邦学习的联合异常检测和移动预测框架FedADMP。FedADMP自适应地在服务器和客户端之间分割训练过程,以减少客户端的计算负荷。为了保护用户数据的隐私,FedADMP中的客户端只将中间模型参数上传到云服务器。我们还开发了一种差分隐私方法,以防止云服务器和外部攻击者在模型上传过程中推断隐私信息。使用真实数据集的大量实验表明,FedADMP始终优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedADMP: A Joint Anomaly Detection and Mobility Prediction Framework via Federated Learning
With the proliferation of mobile devices and smart cameras, detecting anomalies and predicting their mobility are critical for enhancing safety in ubiquitous computing systems. Due to data privacy regulations and limited communication bandwidth, it is infeasible to collect, transmit, and store all data from mobile devices at a central location. To overcome this challenge, we propose FedADMP, a federated learning based joint Anomaly Detection and Mobility Prediction framework. FedADMP adaptively splits the training process between the server and clients to reduce computation loads on clients. To protect the privacy of user data, clients in FedADMP upload only intermediate model parameters to the cloud server. We also develop a di ff erential privacy method to prevent the cloud server and external attackers from inferring private information during the model upload procedure. Extensive experiments using real-world datasets show that FedADMP consistently outperforms existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Systemic Security and Privacy Review: Attacks and Prevention Mechanisms over IOT Layers Mitigating Vulnerabilities in Closed Source Software Comparing Online Surveys for Cybersecurity: SONA and MTurk Dynamic Risk Assessment and Analysis Framework for Large-Scale Cyber-Physical Systems How data-sharing nudges influence people's privacy preferences: A machine learning-based analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1