K. Chessadangkul, N. Damrongplasit, S. Morakul, T. Tharasanit, A. Pimpin
{"title":"羧甲基纤维素和苹果粉混合海藻酸盐/琼脂糖水凝胶的印刷性和细胞毒性","authors":"K. Chessadangkul, N. Damrongplasit, S. Morakul, T. Tharasanit, A. Pimpin","doi":"10.1109/BMEiCON56653.2022.10012110","DOIUrl":null,"url":null,"abstract":"The cultured meat is the solution to reduce resources using in a traditional meat production. It helps produce meat without killing livestock and decrease residue products. The method could also integrate with scaffold’s material which does not derive from animal products. This study aims to investigate the effects of carboxymethyl cellulose (CMC) and apple powder on printability and cytotoxicity as additives in alginate/agarose-based hydrogel. 3D structures of them were printed to find a proper printing condition. From our experiments, the structure could maintain their shapes and uniform line sizes for carboxylmethyl cellulose, but not for apple powder at the 2% w/v alginate and 0.8% w/v agarose. However, the combination of them could be printed well. In parallel, 293FT cells were cultured with hydrogel drop to test cytotoxicity. It showed that the hydrogel with both additives does not harm cells during 8-day culturing.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Printability and cytotoxicity of alginate/agarose hydrogel with carboxylmethyl cellulose and apple powder\",\"authors\":\"K. Chessadangkul, N. Damrongplasit, S. Morakul, T. Tharasanit, A. Pimpin\",\"doi\":\"10.1109/BMEiCON56653.2022.10012110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cultured meat is the solution to reduce resources using in a traditional meat production. It helps produce meat without killing livestock and decrease residue products. The method could also integrate with scaffold’s material which does not derive from animal products. This study aims to investigate the effects of carboxymethyl cellulose (CMC) and apple powder on printability and cytotoxicity as additives in alginate/agarose-based hydrogel. 3D structures of them were printed to find a proper printing condition. From our experiments, the structure could maintain their shapes and uniform line sizes for carboxylmethyl cellulose, but not for apple powder at the 2% w/v alginate and 0.8% w/v agarose. However, the combination of them could be printed well. In parallel, 293FT cells were cultured with hydrogel drop to test cytotoxicity. It showed that the hydrogel with both additives does not harm cells during 8-day culturing.\",\"PeriodicalId\":177401,\"journal\":{\"name\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEiCON56653.2022.10012110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Printability and cytotoxicity of alginate/agarose hydrogel with carboxylmethyl cellulose and apple powder
The cultured meat is the solution to reduce resources using in a traditional meat production. It helps produce meat without killing livestock and decrease residue products. The method could also integrate with scaffold’s material which does not derive from animal products. This study aims to investigate the effects of carboxymethyl cellulose (CMC) and apple powder on printability and cytotoxicity as additives in alginate/agarose-based hydrogel. 3D structures of them were printed to find a proper printing condition. From our experiments, the structure could maintain their shapes and uniform line sizes for carboxylmethyl cellulose, but not for apple powder at the 2% w/v alginate and 0.8% w/v agarose. However, the combination of them could be printed well. In parallel, 293FT cells were cultured with hydrogel drop to test cytotoxicity. It showed that the hydrogel with both additives does not harm cells during 8-day culturing.