Jakub Lokoč, František Mejzlík, Patrik Veselý, Tomás Soucek
{"title":"增强SOMHunter已知项目搜索在生活日志数据","authors":"Jakub Lokoč, František Mejzlík, Patrik Veselý, Tomás Soucek","doi":"10.1145/3463948.3469074","DOIUrl":null,"url":null,"abstract":"SOMHunter represents a modern light-weight framework for known-item search in datasets of visual data like images or videos. The framework combines an effective W2VV++ text-to-image search approach, a traditional Bayesian like model for maintenance of relevance scores influenced by positive examples, and several types of exploration and exploitation displays. With this initial setting in 2020, already the first prototype of the system turned out to be highly competitive in comparison with other state-of-the-art systems at Video Browser Showdown and Lifelog Search Challenge competitions. In this paper, we present a new version of the system further extending the list of visual data search capabilities. The new version combines localized text queries with collage queries tested at VBS 2021 in two separate systems by our team. Furthermore, the new version of SOMHunter will integrate also the new CLIP text search model recently released by OpenAI. We believe that all the extensions will improve chances to effectively initialize the search that can continue with already supported browsing capabilities.","PeriodicalId":150532,"journal":{"name":"Proceedings of the 4th Annual on Lifelog Search Challenge","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Enhanced SOMHunter for Known-item Search in Lifelog Data\",\"authors\":\"Jakub Lokoč, František Mejzlík, Patrik Veselý, Tomás Soucek\",\"doi\":\"10.1145/3463948.3469074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SOMHunter represents a modern light-weight framework for known-item search in datasets of visual data like images or videos. The framework combines an effective W2VV++ text-to-image search approach, a traditional Bayesian like model for maintenance of relevance scores influenced by positive examples, and several types of exploration and exploitation displays. With this initial setting in 2020, already the first prototype of the system turned out to be highly competitive in comparison with other state-of-the-art systems at Video Browser Showdown and Lifelog Search Challenge competitions. In this paper, we present a new version of the system further extending the list of visual data search capabilities. The new version combines localized text queries with collage queries tested at VBS 2021 in two separate systems by our team. Furthermore, the new version of SOMHunter will integrate also the new CLIP text search model recently released by OpenAI. We believe that all the extensions will improve chances to effectively initialize the search that can continue with already supported browsing capabilities.\",\"PeriodicalId\":150532,\"journal\":{\"name\":\"Proceedings of the 4th Annual on Lifelog Search Challenge\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th Annual on Lifelog Search Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3463948.3469074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Annual on Lifelog Search Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463948.3469074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced SOMHunter for Known-item Search in Lifelog Data
SOMHunter represents a modern light-weight framework for known-item search in datasets of visual data like images or videos. The framework combines an effective W2VV++ text-to-image search approach, a traditional Bayesian like model for maintenance of relevance scores influenced by positive examples, and several types of exploration and exploitation displays. With this initial setting in 2020, already the first prototype of the system turned out to be highly competitive in comparison with other state-of-the-art systems at Video Browser Showdown and Lifelog Search Challenge competitions. In this paper, we present a new version of the system further extending the list of visual data search capabilities. The new version combines localized text queries with collage queries tested at VBS 2021 in two separate systems by our team. Furthermore, the new version of SOMHunter will integrate also the new CLIP text search model recently released by OpenAI. We believe that all the extensions will improve chances to effectively initialize the search that can continue with already supported browsing capabilities.