{"title":"层析医学图像正交集插值新技术","authors":"C. Peck, L. Arata, A. Dhawan","doi":"10.1109/ICSYSE.1991.161104","DOIUrl":null,"url":null,"abstract":"A spatially iterated multidimensional Fourier interpolation method (SIMFI) is presented. The method interpolates a multidimensional object from one or sets of parallel biplanes. It may be applied in medical tomographic imaging where a full-resolution, three-dimensional reconstruction is desired, but, due to time and radiation constraints, the data acquired from the scanner are limited to one or more sets of planar slices with large interspatial domain information. The data sets of parallel hyperplanes are used to compute an estimate of the Fourier domain of the object being reconstructed. After inverting the Fourier domain estimate into the spatial domain, the principle of projections onto convex sets (POCS) is used to further improve the reconstruction. This method is applied to a three-dimensional phantom and to a two-dimensional MRI image of the brain. The Fourier interpolation provides a good initial estimate for the iterative POCS technique.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new interpolation technique for orthogonal sets of tomographic medical images\",\"authors\":\"C. Peck, L. Arata, A. Dhawan\",\"doi\":\"10.1109/ICSYSE.1991.161104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spatially iterated multidimensional Fourier interpolation method (SIMFI) is presented. The method interpolates a multidimensional object from one or sets of parallel biplanes. It may be applied in medical tomographic imaging where a full-resolution, three-dimensional reconstruction is desired, but, due to time and radiation constraints, the data acquired from the scanner are limited to one or more sets of planar slices with large interspatial domain information. The data sets of parallel hyperplanes are used to compute an estimate of the Fourier domain of the object being reconstructed. After inverting the Fourier domain estimate into the spatial domain, the principle of projections onto convex sets (POCS) is used to further improve the reconstruction. This method is applied to a three-dimensional phantom and to a two-dimensional MRI image of the brain. The Fourier interpolation provides a good initial estimate for the iterative POCS technique.<<ETX>>\",\"PeriodicalId\":250037,\"journal\":{\"name\":\"IEEE 1991 International Conference on Systems Engineering\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1991 International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1991.161104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new interpolation technique for orthogonal sets of tomographic medical images
A spatially iterated multidimensional Fourier interpolation method (SIMFI) is presented. The method interpolates a multidimensional object from one or sets of parallel biplanes. It may be applied in medical tomographic imaging where a full-resolution, three-dimensional reconstruction is desired, but, due to time and radiation constraints, the data acquired from the scanner are limited to one or more sets of planar slices with large interspatial domain information. The data sets of parallel hyperplanes are used to compute an estimate of the Fourier domain of the object being reconstructed. After inverting the Fourier domain estimate into the spatial domain, the principle of projections onto convex sets (POCS) is used to further improve the reconstruction. This method is applied to a three-dimensional phantom and to a two-dimensional MRI image of the brain. The Fourier interpolation provides a good initial estimate for the iterative POCS technique.<>