{"title":"用COVAMOF建模产品族中的依赖关系","authors":"Marco Sinnema, S. Deelstra, J. Nijhuis, J. Bosch","doi":"10.1109/ECBS.2006.49","DOIUrl":null,"url":null,"abstract":"Many variability modeling approaches consider only formalized dependencies, i.e. in- or exclude relations between variants. However, in real industrial product families, dependencies are often much more complicated. In this paper, we discuss the product derivation problems associated with dependencies, and show how our variability modeling framework COVAMOF addresses these issues. Throughout the paper, we use examples of Intrada, an intelligent traffic systems family of Dacolian B.V","PeriodicalId":430872,"journal":{"name":"13th Annual IEEE International Symposium and Workshop on Engineering of Computer-Based Systems (ECBS'06)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Modeling dependencies in product families with COVAMOF\",\"authors\":\"Marco Sinnema, S. Deelstra, J. Nijhuis, J. Bosch\",\"doi\":\"10.1109/ECBS.2006.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many variability modeling approaches consider only formalized dependencies, i.e. in- or exclude relations between variants. However, in real industrial product families, dependencies are often much more complicated. In this paper, we discuss the product derivation problems associated with dependencies, and show how our variability modeling framework COVAMOF addresses these issues. Throughout the paper, we use examples of Intrada, an intelligent traffic systems family of Dacolian B.V\",\"PeriodicalId\":430872,\"journal\":{\"name\":\"13th Annual IEEE International Symposium and Workshop on Engineering of Computer-Based Systems (ECBS'06)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th Annual IEEE International Symposium and Workshop on Engineering of Computer-Based Systems (ECBS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECBS.2006.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th Annual IEEE International Symposium and Workshop on Engineering of Computer-Based Systems (ECBS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECBS.2006.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling dependencies in product families with COVAMOF
Many variability modeling approaches consider only formalized dependencies, i.e. in- or exclude relations between variants. However, in real industrial product families, dependencies are often much more complicated. In this paper, we discuss the product derivation problems associated with dependencies, and show how our variability modeling framework COVAMOF addresses these issues. Throughout the paper, we use examples of Intrada, an intelligent traffic systems family of Dacolian B.V