{"title":"DyRT:动态响应纹理与图形硬件实时变形模拟","authors":"Doug L. James, D. Pai","doi":"10.1145/566570.566621","DOIUrl":null,"url":null,"abstract":"In this paper we describe how to simulate geometrically complex, interactive, physically-based, volumetric, dynamic deformation models with negligible main CPU costs. This is achieved using a Dynamic Response Texture, or DyRT, that can be mapped onto any conventional animation as an optional rendering stage using commodity graphics hardware. The DyRT simulation process employs precomputed modal vibration models excited by rigid body motions. We present several examples, with an emphasis on bone-based character animation for interactive applications.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"241","resultStr":"{\"title\":\"DyRT: dynamic response textures for real time deformation simulation with graphics hardware\",\"authors\":\"Doug L. James, D. Pai\",\"doi\":\"10.1145/566570.566621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe how to simulate geometrically complex, interactive, physically-based, volumetric, dynamic deformation models with negligible main CPU costs. This is achieved using a Dynamic Response Texture, or DyRT, that can be mapped onto any conventional animation as an optional rendering stage using commodity graphics hardware. The DyRT simulation process employs precomputed modal vibration models excited by rigid body motions. We present several examples, with an emphasis on bone-based character animation for interactive applications.\",\"PeriodicalId\":197746,\"journal\":{\"name\":\"Proceedings of the 29th annual conference on Computer graphics and interactive techniques\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"241\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/566570.566621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/566570.566621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DyRT: dynamic response textures for real time deformation simulation with graphics hardware
In this paper we describe how to simulate geometrically complex, interactive, physically-based, volumetric, dynamic deformation models with negligible main CPU costs. This is achieved using a Dynamic Response Texture, or DyRT, that can be mapped onto any conventional animation as an optional rendering stage using commodity graphics hardware. The DyRT simulation process employs precomputed modal vibration models excited by rigid body motions. We present several examples, with an emphasis on bone-based character animation for interactive applications.