利用机器学习模型诊断阻塞性睡眠呼吸暂停的SAS移动应用程序

Carl Haberfeld, A. Sheta, M. Hossain, H. Turabieh, S. Surani
{"title":"利用机器学习模型诊断阻塞性睡眠呼吸暂停的SAS移动应用程序","authors":"Carl Haberfeld, A. Sheta, M. Hossain, H. Turabieh, S. Surani","doi":"10.1109/UEMCON51285.2020.9298041","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a consistent, inexpensive, and easy to use graphical user interface (GUI) smart phone application named Sleep Apnea Screener (SAS) that can diagnosis Obstructive Sleep Apnea (OSA) based on demographic data such as: gender, age, height, BMI, neck circumference, waist, etc., allowing a tentative diagnosis of OSA without the need for overnight tests. The developed smart phone application can diagnosis sleep apnea using a model trained with 620 samples collected from a sleep center in Corpus Christi, TX. Two machine learning classifiers (i.e., Logistic Regression (LR) and Support Vector Machine (SVM)) were used to diagnosis OSA. Our preliminary results show that at-home OSA screening is indeed possible, and that our application is effective method for covering large numbers of undiagnosed cases.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SAS Mobile Application for Diagnosis of Obstructive Sleep Apnea Utilizing Machine Learning Models\",\"authors\":\"Carl Haberfeld, A. Sheta, M. Hossain, H. Turabieh, S. Surani\",\"doi\":\"10.1109/UEMCON51285.2020.9298041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a consistent, inexpensive, and easy to use graphical user interface (GUI) smart phone application named Sleep Apnea Screener (SAS) that can diagnosis Obstructive Sleep Apnea (OSA) based on demographic data such as: gender, age, height, BMI, neck circumference, waist, etc., allowing a tentative diagnosis of OSA without the need for overnight tests. The developed smart phone application can diagnosis sleep apnea using a model trained with 620 samples collected from a sleep center in Corpus Christi, TX. Two machine learning classifiers (i.e., Logistic Regression (LR) and Support Vector Machine (SVM)) were used to diagnosis OSA. Our preliminary results show that at-home OSA screening is indeed possible, and that our application is effective method for covering large numbers of undiagnosed cases.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提供了一个一致的、廉价的、易于使用的图形用户界面(GUI)智能手机应用程序,名为Sleep Apnea Screener (SAS),它可以根据人口统计数据(如:性别、年龄、身高、BMI、颈围、腰围等)诊断阻塞性睡眠呼吸暂停(OSA),允许对OSA进行初步诊断,而无需通宵测试。开发的智能手机应用程序可以使用从德克萨斯州科珀斯克里斯蒂的睡眠中心收集的620个样本训练的模型来诊断睡眠呼吸暂停。两种机器学习分类器(即逻辑回归(LR)和支持向量机(SVM))用于诊断OSA。我们的初步结果表明,在家进行OSA筛查确实是可能的,我们的应用是覆盖大量未确诊病例的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAS Mobile Application for Diagnosis of Obstructive Sleep Apnea Utilizing Machine Learning Models
In this paper, we provide a consistent, inexpensive, and easy to use graphical user interface (GUI) smart phone application named Sleep Apnea Screener (SAS) that can diagnosis Obstructive Sleep Apnea (OSA) based on demographic data such as: gender, age, height, BMI, neck circumference, waist, etc., allowing a tentative diagnosis of OSA without the need for overnight tests. The developed smart phone application can diagnosis sleep apnea using a model trained with 620 samples collected from a sleep center in Corpus Christi, TX. Two machine learning classifiers (i.e., Logistic Regression (LR) and Support Vector Machine (SVM)) were used to diagnosis OSA. Our preliminary results show that at-home OSA screening is indeed possible, and that our application is effective method for covering large numbers of undiagnosed cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1