{"title":"用叠加投影实现超分辨率","authors":"Niranjan Damera-Venkata, Nelson L. Chang","doi":"10.1109/CVPR.2007.383463","DOIUrl":null,"url":null,"abstract":"We consider the problem of rendering high-resolution images on a display composed of multiple superimposed lower-resolution projectors. A theoretical analysis of this problem in the literature previously concluded that the multi-projector superimposition of low resolution projectors cannot produce high resolution images. In our recent work, we showed to the contrary that super-resolution via multiple superimposed projectors is indeed theoretically achievable. This paper derives practical algorithms for real multi-projector systems that account for the intra- and inter-projector variations and that render high-quality, high-resolution content at real-time interactive frame rates. A camera is used to estimate the geometric, photometric, and color properties of each component projector in a calibration step. Given this parameter information, we demonstrate novel methods for efficiently generating optimal sub-frames so that the resulting projected image is as close as possible to the given high resolution images.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Realizing Super-Resolution with Superimposed Projection\",\"authors\":\"Niranjan Damera-Venkata, Nelson L. Chang\",\"doi\":\"10.1109/CVPR.2007.383463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of rendering high-resolution images on a display composed of multiple superimposed lower-resolution projectors. A theoretical analysis of this problem in the literature previously concluded that the multi-projector superimposition of low resolution projectors cannot produce high resolution images. In our recent work, we showed to the contrary that super-resolution via multiple superimposed projectors is indeed theoretically achievable. This paper derives practical algorithms for real multi-projector systems that account for the intra- and inter-projector variations and that render high-quality, high-resolution content at real-time interactive frame rates. A camera is used to estimate the geometric, photometric, and color properties of each component projector in a calibration step. Given this parameter information, we demonstrate novel methods for efficiently generating optimal sub-frames so that the resulting projected image is as close as possible to the given high resolution images.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Realizing Super-Resolution with Superimposed Projection
We consider the problem of rendering high-resolution images on a display composed of multiple superimposed lower-resolution projectors. A theoretical analysis of this problem in the literature previously concluded that the multi-projector superimposition of low resolution projectors cannot produce high resolution images. In our recent work, we showed to the contrary that super-resolution via multiple superimposed projectors is indeed theoretically achievable. This paper derives practical algorithms for real multi-projector systems that account for the intra- and inter-projector variations and that render high-quality, high-resolution content at real-time interactive frame rates. A camera is used to estimate the geometric, photometric, and color properties of each component projector in a calibration step. Given this parameter information, we demonstrate novel methods for efficiently generating optimal sub-frames so that the resulting projected image is as close as possible to the given high resolution images.