银修饰的铈和镧纳米氧化物的抗病毒活性

M. Zahornyi, O. Lavrynenko, O. Pavlenko, O. Povnitsa, L. Artiukh, K. Naumenko, S. Zahorodnia, A. Ievtushenko
{"title":"银修饰的铈和镧纳米氧化物的抗病毒活性","authors":"M. Zahornyi, O. Lavrynenko, O. Pavlenko, O. Povnitsa, L. Artiukh, K. Naumenko, S. Zahorodnia, A. Ievtushenko","doi":"10.15407/hftp14.02.262","DOIUrl":null,"url":null,"abstract":"Today, the antiviral activity of oxide nanomaterials can be used in the fight against the viral disease COVID-19. It is thought that Ag nanoparticles may bind to the surface glycoprotein of the virus and interfere with the virus’s interaction with epithelial cells, and inhibit virus reproduction by releasing silver ions in the cell. The viruses’ inhibition with RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) genomes by oxide nanocomposites action was presented. In this research, the surface structure of doped CeO2 (La2O3) was studied by nitrogen adsorption-desorption based on BET method. The silver atom’s existence in CeO2 - Ag0 can facilitate the transport of more holes to the surface and can enhance the optical, antivirus activity. The primary particle size of pure cerium dioxide is 7 nm, for CeO2 - Ag composite at 2 and 4 wt. % of silver is 6.5 and 6.9 nm; for La2O3 - Ag 27 and 35 nm, respectively. Cell viability was assessed using an MTT (3-(4,5-Dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide) assay after NPs (nanoparticles) exposure, since only viable cells have functional mitochondrial dehydrogenase enzymes that can reduce MTT to formazan. Nanoparticles were non-toxic for BHK-21(Syrian hamster kidney), Hep-2 (Human larynx carcinoma), and MDCK (Canine kidney) cells in concentrations of 10 and 100 μg/ml, while cell viability was within 76÷100 %. La2O3 and CeO2, which contained 4 wt. % of Ag at a concentration of 1000 μg/ml had a lower toxic effect: for BHK-21 cells 68 and 76 % of viable cells, respectively; for Hep-2 - 40 and 36 %, for MDCK - 42 and 48 %; La2O3 and CeO2 with 2 and 5 wt. % of Ag at a concentration of 1000 µg/ml were highly toxic. The level of ВНК-21, Нер-2, and MDCK cells viability was in a range of 7 to 37 %. It has been stated that oxides of cerium and lanthanum have a pronounced virucidal action against the Herpes simplex virus and Influenza A virus by completely inhibiting the development of its cytopathic action. The lanthanum and cerium oxides with 2 and 5 wt. % of silver inhibited the development of the virus’s CPE by more than 5.0 log10 compared to the virus control. The results show that lanthanum and cerium oxides with 2 and 5 wt. % silver have a high virucidal effect against herpes simplex virus type 1. A 1.0÷4.0 log10 reduction in the infectious titer of the Herpes virus synthesized “de novo” in the presence of lanthanum and cerium oxide nanocomposites has been shown.","PeriodicalId":296392,"journal":{"name":"Himia, Fizika ta Tehnologia Poverhni","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The antiviral activity of cerium and lanthanum nanooxides modified with silver\",\"authors\":\"M. Zahornyi, O. Lavrynenko, O. Pavlenko, O. Povnitsa, L. Artiukh, K. Naumenko, S. Zahorodnia, A. Ievtushenko\",\"doi\":\"10.15407/hftp14.02.262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the antiviral activity of oxide nanomaterials can be used in the fight against the viral disease COVID-19. It is thought that Ag nanoparticles may bind to the surface glycoprotein of the virus and interfere with the virus’s interaction with epithelial cells, and inhibit virus reproduction by releasing silver ions in the cell. The viruses’ inhibition with RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) genomes by oxide nanocomposites action was presented. In this research, the surface structure of doped CeO2 (La2O3) was studied by nitrogen adsorption-desorption based on BET method. The silver atom’s existence in CeO2 - Ag0 can facilitate the transport of more holes to the surface and can enhance the optical, antivirus activity. The primary particle size of pure cerium dioxide is 7 nm, for CeO2 - Ag composite at 2 and 4 wt. % of silver is 6.5 and 6.9 nm; for La2O3 - Ag 27 and 35 nm, respectively. Cell viability was assessed using an MTT (3-(4,5-Dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide) assay after NPs (nanoparticles) exposure, since only viable cells have functional mitochondrial dehydrogenase enzymes that can reduce MTT to formazan. Nanoparticles were non-toxic for BHK-21(Syrian hamster kidney), Hep-2 (Human larynx carcinoma), and MDCK (Canine kidney) cells in concentrations of 10 and 100 μg/ml, while cell viability was within 76÷100 %. La2O3 and CeO2, which contained 4 wt. % of Ag at a concentration of 1000 μg/ml had a lower toxic effect: for BHK-21 cells 68 and 76 % of viable cells, respectively; for Hep-2 - 40 and 36 %, for MDCK - 42 and 48 %; La2O3 and CeO2 with 2 and 5 wt. % of Ag at a concentration of 1000 µg/ml were highly toxic. The level of ВНК-21, Нер-2, and MDCK cells viability was in a range of 7 to 37 %. It has been stated that oxides of cerium and lanthanum have a pronounced virucidal action against the Herpes simplex virus and Influenza A virus by completely inhibiting the development of its cytopathic action. The lanthanum and cerium oxides with 2 and 5 wt. % of silver inhibited the development of the virus’s CPE by more than 5.0 log10 compared to the virus control. The results show that lanthanum and cerium oxides with 2 and 5 wt. % silver have a high virucidal effect against herpes simplex virus type 1. A 1.0÷4.0 log10 reduction in the infectious titer of the Herpes virus synthesized “de novo” in the presence of lanthanum and cerium oxide nanocomposites has been shown.\",\"PeriodicalId\":296392,\"journal\":{\"name\":\"Himia, Fizika ta Tehnologia Poverhni\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Himia, Fizika ta Tehnologia Poverhni\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/hftp14.02.262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Himia, Fizika ta Tehnologia Poverhni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/hftp14.02.262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,氧化物纳米材料的抗病毒活性可用于对抗病毒性疾病COVID-19。认为银纳米颗粒可能与病毒表面糖蛋白结合,干扰病毒与上皮细胞的相互作用,并通过在细胞内释放银离子抑制病毒繁殖。本文报道了氧化纳米复合材料对病毒RNA(核糖核酸)和DNA(脱氧核糖核酸)基因组的抑制作用。本研究采用BET法对掺杂CeO2 (La2O3)的氮吸附-解吸进行了表面结构研究。银原子在CeO2 - Ag0中的存在有利于将更多的空穴输送到表面,增强了其光学抗病毒活性。纯二氧化铈的初始粒径为7 nm, 2和4 wt %的CeO2 - Ag复合材料的初始粒径为6.5和6.9 nm;La2O3 - Ag分别为27 nm和35 nm。在NPs(纳米颗粒)暴露后,使用MTT(3-(4,5-二甲基噻唑2-基)-2,5-二苯基溴化四唑)测定法评估细胞活力,因为只有活的细胞才具有功能性线粒体脱氢酶,可以将MTT还原为甲醛。纳米颗粒在浓度为10和100 μg/ml时对BHK-21(叙利亚仓鼠肾)、Hep-2(人喉癌)和MDCK(犬肾)细胞无毒,细胞存活率在76÷100 %以内。在浓度为1000 μg/ml时,Ag含量为4 wt. %的La2O3和CeO2对BHK-21细胞的毒性作用较低,分别为68%和76%;Hep-2 - 40和36%,MDCK - 42和48%;在浓度为1000µg/ml时,La2O3和CeO2分别含2和5 wt. %的Ag呈高毒性。ВНК-21、Нер-2和MDCK细胞活力水平在7% ~ 37%之间。铈和镧的氧化物对单纯疱疹病毒和甲型流感病毒有明显的杀病毒作用,完全抑制其细胞病变作用的发展。与病毒对照相比,含2 wt. %和5 wt. %银的镧和铈氧化物对病毒CPE的抑制作用大于5.0 log10。结果表明,含2和5 wt. %银的镧和铈氧化物对1型单纯疱疹病毒有很强的杀病毒作用。研究表明,在镧和氧化铈纳米复合材料的存在下,疱疹病毒“从头”合成的感染性滴度降低1.0÷4.0 log10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The antiviral activity of cerium and lanthanum nanooxides modified with silver
Today, the antiviral activity of oxide nanomaterials can be used in the fight against the viral disease COVID-19. It is thought that Ag nanoparticles may bind to the surface glycoprotein of the virus and interfere with the virus’s interaction with epithelial cells, and inhibit virus reproduction by releasing silver ions in the cell. The viruses’ inhibition with RNA (ribonucleic acid) and DNA (deoxyribonucleic acid) genomes by oxide nanocomposites action was presented. In this research, the surface structure of doped CeO2 (La2O3) was studied by nitrogen adsorption-desorption based on BET method. The silver atom’s existence in CeO2 - Ag0 can facilitate the transport of more holes to the surface and can enhance the optical, antivirus activity. The primary particle size of pure cerium dioxide is 7 nm, for CeO2 - Ag composite at 2 and 4 wt. % of silver is 6.5 and 6.9 nm; for La2O3 - Ag 27 and 35 nm, respectively. Cell viability was assessed using an MTT (3-(4,5-Dimethylthiazol 2-yl)-2,5-diphenyltetrazolium bromide) assay after NPs (nanoparticles) exposure, since only viable cells have functional mitochondrial dehydrogenase enzymes that can reduce MTT to formazan. Nanoparticles were non-toxic for BHK-21(Syrian hamster kidney), Hep-2 (Human larynx carcinoma), and MDCK (Canine kidney) cells in concentrations of 10 and 100 μg/ml, while cell viability was within 76÷100 %. La2O3 and CeO2, which contained 4 wt. % of Ag at a concentration of 1000 μg/ml had a lower toxic effect: for BHK-21 cells 68 and 76 % of viable cells, respectively; for Hep-2 - 40 and 36 %, for MDCK - 42 and 48 %; La2O3 and CeO2 with 2 and 5 wt. % of Ag at a concentration of 1000 µg/ml were highly toxic. The level of ВНК-21, Нер-2, and MDCK cells viability was in a range of 7 to 37 %. It has been stated that oxides of cerium and lanthanum have a pronounced virucidal action against the Herpes simplex virus and Influenza A virus by completely inhibiting the development of its cytopathic action. The lanthanum and cerium oxides with 2 and 5 wt. % of silver inhibited the development of the virus’s CPE by more than 5.0 log10 compared to the virus control. The results show that lanthanum and cerium oxides with 2 and 5 wt. % silver have a high virucidal effect against herpes simplex virus type 1. A 1.0÷4.0 log10 reduction in the infectious titer of the Herpes virus synthesized “de novo” in the presence of lanthanum and cerium oxide nanocomposites has been shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Mechanical, thermooxidative and biodegradable properties of composites from epoxyurethanes and chemically modified hemp woody core Photocatalytic discoloration of organic dyes in water dispersion medium by anatase-based binary nanocomposites Structure and stability of MnOx-Na2WO4/SiO2 catalyst for oxidative condensation of methane Effect of zeolites modification on their adsorption properties Removal of cesium and strontium ions from aqueous solutions using metakaolin based geopolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1