S. Parthasarathy, D. Wolf, Evelyn Hu, S. Hackwood, G. Beni
{"title":"胶片厚度测定用色觉系统","authors":"S. Parthasarathy, D. Wolf, Evelyn Hu, S. Hackwood, G. Beni","doi":"10.1109/ROBOT.1987.1087984","DOIUrl":null,"url":null,"abstract":"The use of color vision as a tool for machine vision provides a powerful means of performing rapid, accurate inspection of microelectronic structures. Since microelectronics fabrication is in large part a thin film technology, and since thin films have characteristic colors, this approach extends the range of optical analysis possible. We have constructed a color vision system used to measure thin film dielectric materials. Color matching is performed rapidly (<100 msecs) and with resolution better than 20 Å. The resolution limit has been so far set only by the samples available for measurement. We have further extended the capability of the system beyond simple color matching to identify true unknown samples whose thickness fall within the range of the original system database. Feed-back control of the illumination has been incorporated into the system; we present data on the effect of shifts in lighting or magnification. Microscopic, as well as broad area measurements (for uniformity) can be made.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A color vision system for film thickness determination\",\"authors\":\"S. Parthasarathy, D. Wolf, Evelyn Hu, S. Hackwood, G. Beni\",\"doi\":\"10.1109/ROBOT.1987.1087984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of color vision as a tool for machine vision provides a powerful means of performing rapid, accurate inspection of microelectronic structures. Since microelectronics fabrication is in large part a thin film technology, and since thin films have characteristic colors, this approach extends the range of optical analysis possible. We have constructed a color vision system used to measure thin film dielectric materials. Color matching is performed rapidly (<100 msecs) and with resolution better than 20 Å. The resolution limit has been so far set only by the samples available for measurement. We have further extended the capability of the system beyond simple color matching to identify true unknown samples whose thickness fall within the range of the original system database. Feed-back control of the illumination has been incorporated into the system; we present data on the effect of shifts in lighting or magnification. Microscopic, as well as broad area measurements (for uniformity) can be made.\",\"PeriodicalId\":438447,\"journal\":{\"name\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1987.1087984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A color vision system for film thickness determination
The use of color vision as a tool for machine vision provides a powerful means of performing rapid, accurate inspection of microelectronic structures. Since microelectronics fabrication is in large part a thin film technology, and since thin films have characteristic colors, this approach extends the range of optical analysis possible. We have constructed a color vision system used to measure thin film dielectric materials. Color matching is performed rapidly (<100 msecs) and with resolution better than 20 Å. The resolution limit has been so far set only by the samples available for measurement. We have further extended the capability of the system beyond simple color matching to identify true unknown samples whose thickness fall within the range of the original system database. Feed-back control of the illumination has been incorporated into the system; we present data on the effect of shifts in lighting or magnification. Microscopic, as well as broad area measurements (for uniformity) can be made.