使用生成语法解决构建块问题

Chris R. Cox, R. Watson
{"title":"使用生成语法解决构建块问题","authors":"Chris R. Cox, R. Watson","doi":"10.1145/2576768.2598259","DOIUrl":null,"url":null,"abstract":"In this work we demonstrate novel applications of generative grammar to evolutionary search. We introduce a class of grammar that can represent hierarchical schema structure in a problem space, and describe an algorithm that can infer an instance of the grammar from a population of sample phenotypes. Unlike conventional sequence-based grammars this grammar represents set-membership relationships, not strings, and is therefore insensitive to gene-ordering and physical linkage. We show that these methods are capable of accurately identifying problem structure from populations of above-average-fitness individuals on simple modular and hierarchically modular test problems. We then show how these grammatical models can be used to aid evolutionary problem solving by enabling facilitated variation; specifically, by producing novel combinations of schemata observed in the sample population whilst respecting the inherent constraint structure of the problem space. This provides a robust method of building-block recombination that is linkage-invariant and not restricted to low-order schemata.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"8 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Solving building block problems using generative grammar\",\"authors\":\"Chris R. Cox, R. Watson\",\"doi\":\"10.1145/2576768.2598259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we demonstrate novel applications of generative grammar to evolutionary search. We introduce a class of grammar that can represent hierarchical schema structure in a problem space, and describe an algorithm that can infer an instance of the grammar from a population of sample phenotypes. Unlike conventional sequence-based grammars this grammar represents set-membership relationships, not strings, and is therefore insensitive to gene-ordering and physical linkage. We show that these methods are capable of accurately identifying problem structure from populations of above-average-fitness individuals on simple modular and hierarchically modular test problems. We then show how these grammatical models can be used to aid evolutionary problem solving by enabling facilitated variation; specifically, by producing novel combinations of schemata observed in the sample population whilst respecting the inherent constraint structure of the problem space. This provides a robust method of building-block recombination that is linkage-invariant and not restricted to low-order schemata.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"8 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,我们展示了生成语法在进化搜索中的新应用。我们引入了一类可以在问题空间中表示分层模式结构的语法,并描述了一种可以从样本表型总体中推断语法实例的算法。与传统的基于序列的语法不同,该语法表示集合成员关系,而不是字符串,因此对基因排序和物理链接不敏感。我们证明了这些方法能够在简单模块化和分层模块化测试问题上准确地从高于平均适应度的个体群体中识别问题结构。然后,我们展示了这些语法模型如何通过促进变异来帮助解决进化问题;具体来说,通过在尊重问题空间的固有约束结构的同时,产生在样本中观察到的模式的新组合。这提供了一种健壮的构建块重组方法,它是链接不变的,不局限于低阶模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving building block problems using generative grammar
In this work we demonstrate novel applications of generative grammar to evolutionary search. We introduce a class of grammar that can represent hierarchical schema structure in a problem space, and describe an algorithm that can infer an instance of the grammar from a population of sample phenotypes. Unlike conventional sequence-based grammars this grammar represents set-membership relationships, not strings, and is therefore insensitive to gene-ordering and physical linkage. We show that these methods are capable of accurately identifying problem structure from populations of above-average-fitness individuals on simple modular and hierarchically modular test problems. We then show how these grammatical models can be used to aid evolutionary problem solving by enabling facilitated variation; specifically, by producing novel combinations of schemata observed in the sample population whilst respecting the inherent constraint structure of the problem space. This provides a robust method of building-block recombination that is linkage-invariant and not restricted to low-order schemata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-cornered coevolution learning classifier systems for classification tasks Runtime analysis to compare best-improvement and first-improvement in memetic algorithms Clonal selection based fuzzy C-means algorithm for clustering SPSO 2011: analysis of stability; local convergence; and rotation sensitivity GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1