神经影像数据的伪边际贝叶斯多类多核学习

Andrew D. O'Harney, A. Marquand, K. Rubia, K. Chantiluke, Anna B. Smith, Ana Cubillo, C. Blain, M. Filippone
{"title":"神经影像数据的伪边际贝叶斯多类多核学习","authors":"Andrew D. O'Harney, A. Marquand, K. Rubia, K. Chantiluke, Anna B. Smith, Ana Cubillo, C. Blain, M. Filippone","doi":"10.1109/ICPR.2014.549","DOIUrl":null,"url":null,"abstract":"In clinical neuroimaging applications where subjects belong to one of multiple classes of disease states and multiple imaging sources are available, the aim is to achieve accurate classification while assessing the importance of the sources in the classification task. This work proposes the use of fully Bayesian multiple-class multiple-kernel learning based on Gaussian Processes, as it offers flexible classification capabilities and a sound quantification of uncertainty in parameter estimates and predictions. The exact inference of parameters and accurate quantification of uncertainty in Gaussian Process models, however, poses a computationally challenging problem. This paper proposes the application of advanced inference techniques based on Markov chain Monte Carlo and unbiased estimates of the marginal likelihood, and demonstrates their ability to accurately and efficiently carry out inference in their application on synthetic data and real clinical neuroimaging data. The results in this paper are important as they further work in the direction of achieving computationally feasible fully Bayesian models for a wide range of real world applications.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pseudo-Marginal Bayesian Multiple-Class Multiple-Kernel Learning for Neuroimaging Data\",\"authors\":\"Andrew D. O'Harney, A. Marquand, K. Rubia, K. Chantiluke, Anna B. Smith, Ana Cubillo, C. Blain, M. Filippone\",\"doi\":\"10.1109/ICPR.2014.549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In clinical neuroimaging applications where subjects belong to one of multiple classes of disease states and multiple imaging sources are available, the aim is to achieve accurate classification while assessing the importance of the sources in the classification task. This work proposes the use of fully Bayesian multiple-class multiple-kernel learning based on Gaussian Processes, as it offers flexible classification capabilities and a sound quantification of uncertainty in parameter estimates and predictions. The exact inference of parameters and accurate quantification of uncertainty in Gaussian Process models, however, poses a computationally challenging problem. This paper proposes the application of advanced inference techniques based on Markov chain Monte Carlo and unbiased estimates of the marginal likelihood, and demonstrates their ability to accurately and efficiently carry out inference in their application on synthetic data and real clinical neuroimaging data. The results in this paper are important as they further work in the direction of achieving computationally feasible fully Bayesian models for a wide range of real world applications.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在临床神经影像学应用中,受试者属于多个疾病状态类别之一,并且有多个成像源可用,其目的是在评估分类任务中来源的重要性的同时实现准确的分类。这项工作提出了基于高斯过程的全贝叶斯多类多核学习的使用,因为它提供了灵活的分类能力和参数估计和预测中的不确定性的可靠量化。然而,高斯过程模型中参数的精确推断和不确定性的精确量化在计算上是一个具有挑战性的问题。本文提出了基于马尔可夫链蒙特卡罗和无偏边际似然估计的高级推理技术的应用,并在合成数据和临床真实神经影像学数据的应用中展示了其准确高效的推理能力。本文的结果很重要,因为它们进一步朝着实现广泛的现实世界应用的计算可行的全贝叶斯模型的方向工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pseudo-Marginal Bayesian Multiple-Class Multiple-Kernel Learning for Neuroimaging Data
In clinical neuroimaging applications where subjects belong to one of multiple classes of disease states and multiple imaging sources are available, the aim is to achieve accurate classification while assessing the importance of the sources in the classification task. This work proposes the use of fully Bayesian multiple-class multiple-kernel learning based on Gaussian Processes, as it offers flexible classification capabilities and a sound quantification of uncertainty in parameter estimates and predictions. The exact inference of parameters and accurate quantification of uncertainty in Gaussian Process models, however, poses a computationally challenging problem. This paper proposes the application of advanced inference techniques based on Markov chain Monte Carlo and unbiased estimates of the marginal likelihood, and demonstrates their ability to accurately and efficiently carry out inference in their application on synthetic data and real clinical neuroimaging data. The results in this paper are important as they further work in the direction of achieving computationally feasible fully Bayesian models for a wide range of real world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1