利用部分联邦学习缓解数据中毒攻击

Khanh-Huu-The Dam, Axel Legay
{"title":"利用部分联邦学习缓解数据中毒攻击","authors":"Khanh-Huu-The Dam, Axel Legay","doi":"10.1145/3600160.3605032","DOIUrl":null,"url":null,"abstract":"An efficient machine learning model for malware detection requires a large dataset to train. Yet it is not easy to collect such a large dataset without violating or leaving vulnerable to potential violation various aspects of data privacy. Our work proposes a federated learning framework that permits multiple parties to collaborate on learning behavioral graphs for malware detection. Our proposed graph classification framework allows the participating parties to freely decide their preferred classifier model without acknowledging their preferences to the others involved. This mitigates the chance of any data poisoning attacks. In our experiments, our classification model using the partially federated learning achieved the F1-score of 0.97, close to the performance of the centralized data training models. Moreover, the impact of the label flipping attack against our model is less than 0.02.","PeriodicalId":107145,"journal":{"name":"Proceedings of the 18th International Conference on Availability, Reliability and Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigate Data Poisoning Attack by Partially Federated Learning\",\"authors\":\"Khanh-Huu-The Dam, Axel Legay\",\"doi\":\"10.1145/3600160.3605032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient machine learning model for malware detection requires a large dataset to train. Yet it is not easy to collect such a large dataset without violating or leaving vulnerable to potential violation various aspects of data privacy. Our work proposes a federated learning framework that permits multiple parties to collaborate on learning behavioral graphs for malware detection. Our proposed graph classification framework allows the participating parties to freely decide their preferred classifier model without acknowledging their preferences to the others involved. This mitigates the chance of any data poisoning attacks. In our experiments, our classification model using the partially federated learning achieved the F1-score of 0.97, close to the performance of the centralized data training models. Moreover, the impact of the label flipping attack against our model is less than 0.02.\",\"PeriodicalId\":107145,\"journal\":{\"name\":\"Proceedings of the 18th International Conference on Availability, Reliability and Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3600160.3605032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3600160.3605032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个有效的恶意软件检测机器学习模型需要大量的数据集来训练。然而,收集如此庞大的数据集而不侵犯或容易受到潜在侵犯的数据隐私是不容易的。我们的工作提出了一个联邦学习框架,允许多方协作学习恶意软件检测的行为图。我们提出的图分类框架允许参与各方自由决定他们喜欢的分类器模型,而不承认他们对其他相关方的偏好。这减少了任何数据中毒攻击的机会。在我们的实验中,我们使用部分联邦学习的分类模型的f1得分为0.97,接近集中式数据训练模型的性能。此外,标签翻转攻击对我们模型的影响小于0.02。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigate Data Poisoning Attack by Partially Federated Learning
An efficient machine learning model for malware detection requires a large dataset to train. Yet it is not easy to collect such a large dataset without violating or leaving vulnerable to potential violation various aspects of data privacy. Our work proposes a federated learning framework that permits multiple parties to collaborate on learning behavioral graphs for malware detection. Our proposed graph classification framework allows the participating parties to freely decide their preferred classifier model without acknowledging their preferences to the others involved. This mitigates the chance of any data poisoning attacks. In our experiments, our classification model using the partially federated learning achieved the F1-score of 0.97, close to the performance of the centralized data training models. Moreover, the impact of the label flipping attack against our model is less than 0.02.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Confidential Quantum Computing Enabling Qualified Anonymity for Enhanced User Privacy in the Digital Era Fingerprint forgery training: Easy to learn, hard to perform Experiences with Secure Pipelines in Highly Regulated Environments Leveraging Knowledge Graphs For Classifying Incident Situations in ICT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1