利用具有连续参数的知识梯度标定仿真模型

Warren R. Scott, Warrren B Powell, H. Simão
{"title":"利用具有连续参数的知识梯度标定仿真模型","authors":"Warren R. Scott, Warrren B Powell, H. Simão","doi":"10.1109/WSC.2010.5679082","DOIUrl":null,"url":null,"abstract":"We describe an adaptation of the knowledge gradient, originally developed for discrete ranking and selection problems, to the problem of calibrating continuous parameters for the purpose of tuning a simulator. The knowledge gradient for continuous parameters uses a continuous approximation of the expected value of a single measurement to guide the choice of where to collect information next. We show how to find the parameter setting that maximizes the expected value of a measurement by optimizing a continuous but nonconcave surface. We compare the method to sequential kriging for a series of test surfaces, and then demonstrate its performance in the calibration of an expensive industrial simulator.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Calibrating simulation models using the knowledge gradient with continuous parameters\",\"authors\":\"Warren R. Scott, Warrren B Powell, H. Simão\",\"doi\":\"10.1109/WSC.2010.5679082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an adaptation of the knowledge gradient, originally developed for discrete ranking and selection problems, to the problem of calibrating continuous parameters for the purpose of tuning a simulator. The knowledge gradient for continuous parameters uses a continuous approximation of the expected value of a single measurement to guide the choice of where to collect information next. We show how to find the parameter setting that maximizes the expected value of a measurement by optimizing a continuous but nonconcave surface. We compare the method to sequential kriging for a series of test surfaces, and then demonstrate its performance in the calibration of an expensive industrial simulator.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5679082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5679082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们描述了最初为离散排序和选择问题开发的知识梯度对校准连续参数以调整模拟器的问题的适应。连续参数的知识梯度使用单个测量期望值的连续近似值来指导下一步收集信息的选择。我们展示了如何通过优化连续但非凹的表面来找到最大化测量期望值的参数设置。我们将该方法与序列克里格法进行了一系列测试表面的比较,然后在一个昂贵的工业模拟器的校准中证明了它的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibrating simulation models using the knowledge gradient with continuous parameters
We describe an adaptation of the knowledge gradient, originally developed for discrete ranking and selection problems, to the problem of calibrating continuous parameters for the purpose of tuning a simulator. The knowledge gradient for continuous parameters uses a continuous approximation of the expected value of a single measurement to guide the choice of where to collect information next. We show how to find the parameter setting that maximizes the expected value of a measurement by optimizing a continuous but nonconcave surface. We compare the method to sequential kriging for a series of test surfaces, and then demonstrate its performance in the calibration of an expensive industrial simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An exploration of the effects of maintenance manning on Combat Mission Readiness utilizing agent based modeling Project management simulation with PTB Project Team Builder Agent-based simulation tutorial - simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation Modeling and simulation method to find and eliminate bottlenecks in production logistics systems Machine control level simulation of an AS/RS in the automotive industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1