鲁棒面部动作识别实时3D流

F. Tsalakanidou, S. Malassiotis
{"title":"鲁棒面部动作识别实时3D流","authors":"F. Tsalakanidou, S. Malassiotis","doi":"10.1109/CVPRW.2009.5204281","DOIUrl":null,"url":null,"abstract":"This paper presents a completely automated facial action and facial expression recognition system using 2D + 3D images recorded in real-time by a structured light sensor. It is based on local feature tracking and rule-based classification of geometric, appearance and surface curvature measurements. Good performance is achieved under relatively non-controlled conditions.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Robust facial action recognition from real-time 3D streams\",\"authors\":\"F. Tsalakanidou, S. Malassiotis\",\"doi\":\"10.1109/CVPRW.2009.5204281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a completely automated facial action and facial expression recognition system using 2D + 3D images recorded in real-time by a structured light sensor. It is based on local feature tracking and rule-based classification of geometric, appearance and surface curvature measurements. Good performance is achieved under relatively non-controlled conditions.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文介绍了一种完全自动化的面部动作和面部表情识别系统,该系统利用结构光传感器实时记录的2D + 3D图像。它基于局部特征跟踪和基于规则的几何、外观和表面曲率测量分类。在相对不受控制的条件下取得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust facial action recognition from real-time 3D streams
This paper presents a completely automated facial action and facial expression recognition system using 2D + 3D images recorded in real-time by a structured light sensor. It is based on local feature tracking and rule-based classification of geometric, appearance and surface curvature measurements. Good performance is achieved under relatively non-controlled conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1