利用机器学习提高蜂窝网络的吞吐量——以LTE为例

Prasad Gaikwad, Saidhiraj Amuru, K. Kuchi
{"title":"利用机器学习提高蜂窝网络的吞吐量——以LTE为例","authors":"Prasad Gaikwad, Saidhiraj Amuru, K. Kuchi","doi":"10.1109/NCC52529.2021.9530047","DOIUrl":null,"url":null,"abstract":"Long Term Evolution (LTE) focused on providing high data rates at low latency when compared to previous-generation technologies. The recent research and development in machine learning for wireless communication networks focus on making these networks more efficient, intelligent, and optimal. We propose a machine learning algorithm to improve the performance of LTE in a real-time deployments. Specifically, we focus on the case of single-user multiple-input multiple-output transmission mode (TM4 as known in LTE). The channel quality feedback from user to the base stations plays a crucial role to ensure successful communication with low error rate in this transmission mode. The feedback from the user includes precoding matrix indicator (PMI), rank indicator apart from the channel quality feedback. However, in practical systems, as the base station must support several users, there is a delay expected from the time a user sends feedback until the time it is scheduled. This time lag can cause significant performance degradation depending on the channel conditions and also in cases when the user is mobile. Hence, to eliminate this adverse impact, we present a machine learning model that predict future channels and the feedback from the user is calculated based on these predictions. Via several numerical simulations, we show the effectiveness of the proposed algorithms under a variety of scenarios. Without loss of generality, the same work can be applied in the context of 5G NR. LTE is used only as a case study due to its vast prevalence and deployments even as of today.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Throughput of a Cellular Network using Machine Learning - A Case Study of LTE\",\"authors\":\"Prasad Gaikwad, Saidhiraj Amuru, K. Kuchi\",\"doi\":\"10.1109/NCC52529.2021.9530047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long Term Evolution (LTE) focused on providing high data rates at low latency when compared to previous-generation technologies. The recent research and development in machine learning for wireless communication networks focus on making these networks more efficient, intelligent, and optimal. We propose a machine learning algorithm to improve the performance of LTE in a real-time deployments. Specifically, we focus on the case of single-user multiple-input multiple-output transmission mode (TM4 as known in LTE). The channel quality feedback from user to the base stations plays a crucial role to ensure successful communication with low error rate in this transmission mode. The feedback from the user includes precoding matrix indicator (PMI), rank indicator apart from the channel quality feedback. However, in practical systems, as the base station must support several users, there is a delay expected from the time a user sends feedback until the time it is scheduled. This time lag can cause significant performance degradation depending on the channel conditions and also in cases when the user is mobile. Hence, to eliminate this adverse impact, we present a machine learning model that predict future channels and the feedback from the user is calculated based on these predictions. Via several numerical simulations, we show the effectiveness of the proposed algorithms under a variety of scenarios. Without loss of generality, the same work can be applied in the context of 5G NR. LTE is used only as a case study due to its vast prevalence and deployments even as of today.\",\"PeriodicalId\":414087,\"journal\":{\"name\":\"2021 National Conference on Communications (NCC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC52529.2021.9530047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与上一代技术相比,长期演进(LTE)专注于在低延迟下提供高数据速率。无线通信网络机器学习的最新研究和发展重点是使这些网络更加高效、智能和优化。我们提出了一种机器学习算法来提高LTE在实时部署中的性能。具体来说,我们关注的是单用户多输入多输出传输模式(LTE中称为TM4)。在这种传输方式下,用户对基站的信道质量反馈对保证通信的成功和低错误率起着至关重要的作用。用户反馈除信道质量反馈外,还包括预编码矩阵指标(PMI)、排名指标。然而,在实际系统中,由于基站必须支持多个用户,因此从用户发送反馈到调度时间之间预计会有延迟。这个时间延迟可能会导致显著的性能下降,具体取决于信道条件以及用户移动时的情况。因此,为了消除这种不利影响,我们提出了一个机器学习模型,该模型可以预测未来的渠道,并根据这些预测计算用户的反馈。通过几个数值模拟,我们证明了所提出的算法在各种场景下的有效性。在不失去通用性的情况下,同样的工作可以应用于5G NR的背景下。LTE仅作为案例研究,因为它的广泛普及和部署,即使在今天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Throughput of a Cellular Network using Machine Learning - A Case Study of LTE
Long Term Evolution (LTE) focused on providing high data rates at low latency when compared to previous-generation technologies. The recent research and development in machine learning for wireless communication networks focus on making these networks more efficient, intelligent, and optimal. We propose a machine learning algorithm to improve the performance of LTE in a real-time deployments. Specifically, we focus on the case of single-user multiple-input multiple-output transmission mode (TM4 as known in LTE). The channel quality feedback from user to the base stations plays a crucial role to ensure successful communication with low error rate in this transmission mode. The feedback from the user includes precoding matrix indicator (PMI), rank indicator apart from the channel quality feedback. However, in practical systems, as the base station must support several users, there is a delay expected from the time a user sends feedback until the time it is scheduled. This time lag can cause significant performance degradation depending on the channel conditions and also in cases when the user is mobile. Hence, to eliminate this adverse impact, we present a machine learning model that predict future channels and the feedback from the user is calculated based on these predictions. Via several numerical simulations, we show the effectiveness of the proposed algorithms under a variety of scenarios. Without loss of generality, the same work can be applied in the context of 5G NR. LTE is used only as a case study due to its vast prevalence and deployments even as of today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomedical Image Retrieval using Muti-Scale Local Bit-plane Arbitrary Shaped Patterns Forensics of Decompressed JPEG Color Images Based on Chroma Subsampling Optimized Bio-inspired Spiking Neural Models based Anatomical and Functional Neurological Image Fusion in NSST Domain Improved Hankel Norm Criterion for Interfered Nonlinear Digital Filters Subjected to Hardware Constraints The Capacity of Photonic Erasure Channels with Detector Dead Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1